

The vaginal microbiome

And how to treat vaginal complaints

Microbiome Center: evidenzbasierte, personalisierte Präzisionsmedizin

Medical topics

Karin Pijper Founder MC, Medical director, family doctor

Moderator

Wim de Jong *General director*

Scientific topics

Dennis Zeilstra

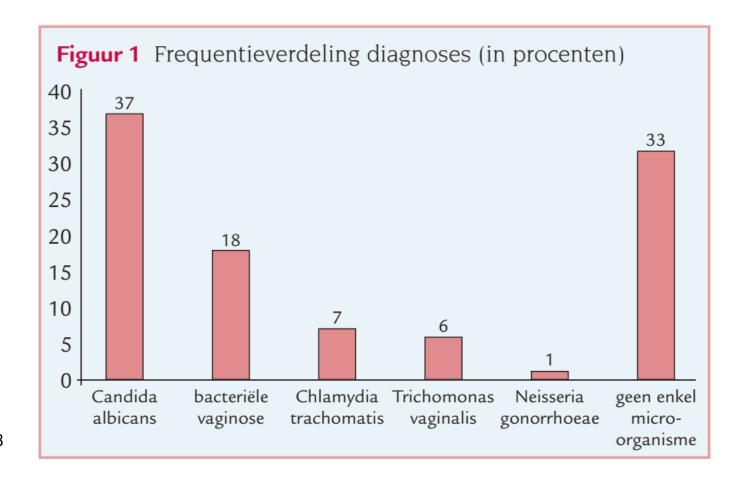
Director for science and technology

Microbiome Center

- Founded in 2018
- Microbiome Center support practitioners with the treatment of chronic patients through personalised, evidence base microbiome treatments advice based on a patient's complaints, medical background and stool analyses.
- Network of more than 600 Medical Doctors and practitioners in The Netherlands, Germany, Austria, Switzerland, Italy, etc.
- Partnerships
 - BIOVIS Diagnostik
 - Blumenau Apotheke München
 - Scientist, Universities and patient groups

Today's topics

- 1. Introduction: vaginal complaints
- 2. The vaginal microbiome
- 3. Various causes of vaginitis
 - Bacterial vaginosis
 - Vulvovaginal candidiasis
- 4. Fertility
- 5. Urinary tract infections
- 6. Treatment with probiotics
- 7. Vaginal suppositories
- 8. Conclusions



Introduction: vaginal complaints

Vaginal complaints

- According to the Dutch Family Doctor Association (NHG), the incidence of vaginal complaints is¹:
 - 15.1 per 1000 per year for fluor vaginalis
 - Double for younger women
 - 24.6 per 1000 per year for urogenital candidiasis
- An older Dutch study among 682 women who visited the family doctor shows similar numbers (figure)².
- International figures of BV prevalence vary substantially (5-60%), with Finland and the US being most representative (5% and 30%)³

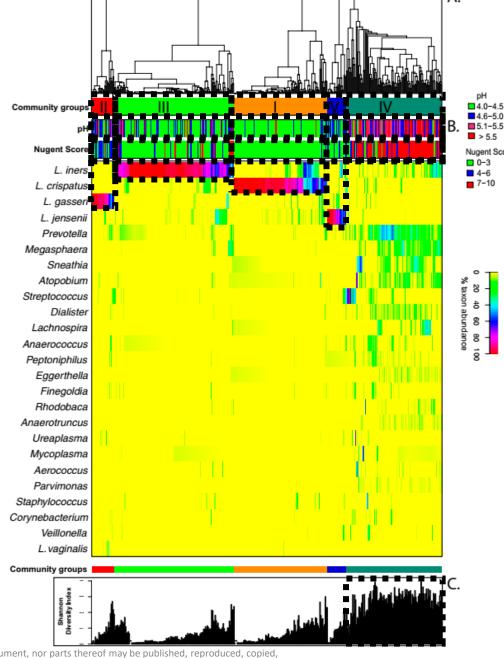
^{1.} Fluor vaginalis | NHG-Richtlijnen, accessed 14-2-2023

^{2.} Boeke, A. et al. Huisarts & Wetenschap 11, 616–620 (2002)

^{3.} Coudray, M. S. et al. Eur J Obstet Gynecol Reprod Biol 245, 143-148 (2020)

Vaginal complaints

- Not only are vaginal complaint common, mental wellbeing is affected too¹:
 - Fear (e.g. for severe disease or STD)
 - Shame
 - Problems in sexual relationship
- Bacterial vaginosis (BV) is most common cause of abnormal vaginal discharge²:
 - Symptoms: malodor, increased pH, itching
 - 50% asymptomatic
 - Risk factors: sexual history, intravaginal practices, contraceptive use, antibiotic use.


^{1.} Boeke, A. et al. Huisarts & Wetenschap 11, 616–620 (2002)

The vaginal microbiome

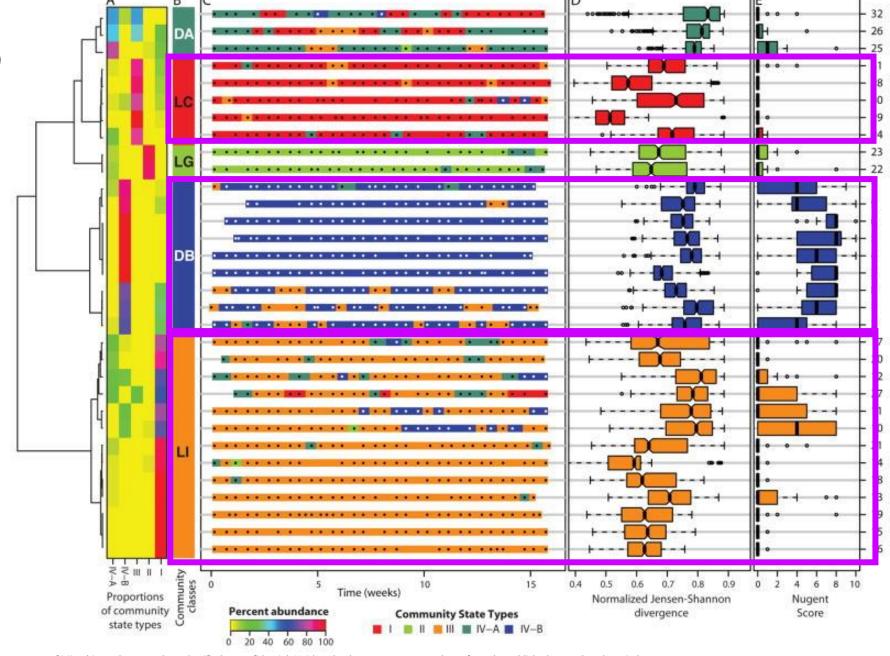
Vaginal microbiome

- The most cited study on the vaginal microbiome was published in 2011¹.
 - 5 groups were identified
 - In 4 of these the vaginal microbiome is dominated by a single Lactobacillus species: L. iners, L. crispatus, L. gasseri, L. jensenii.
 - The 5th group was characterized by high diversity. This 5th group has been regrouped into two subgroups^{2,3}.
 - One with high Nugent score.
- Although this grouping has been debated, conclusion remains that most women have a vaginal microbiome characterized by:
 - Single dominating Lactobacillus species (1 of 4)².
 - pH below 4.5

^{1.} Ravel, J. et al. Proc Natl Acad Sci U S A 108, 4680–4687 (2011)

^{2.} Verstraelen, H. et al. Journal of Lower Genital Tract Diffeenes26f 记录2002 ment are property of Microbiome Center and are classified as confidential. Neither the document, nor parts thereof may be published, reproduced, copied,

^{3.} Gajer, P. et al. Sci Transl Med 4, 132ra52 (2012) made public, or distributed without explicit written permission of Microbiome Center. This content shall not be considered medical advice and is provided for information purpose only. The content is exclusively intended for health care professionals.

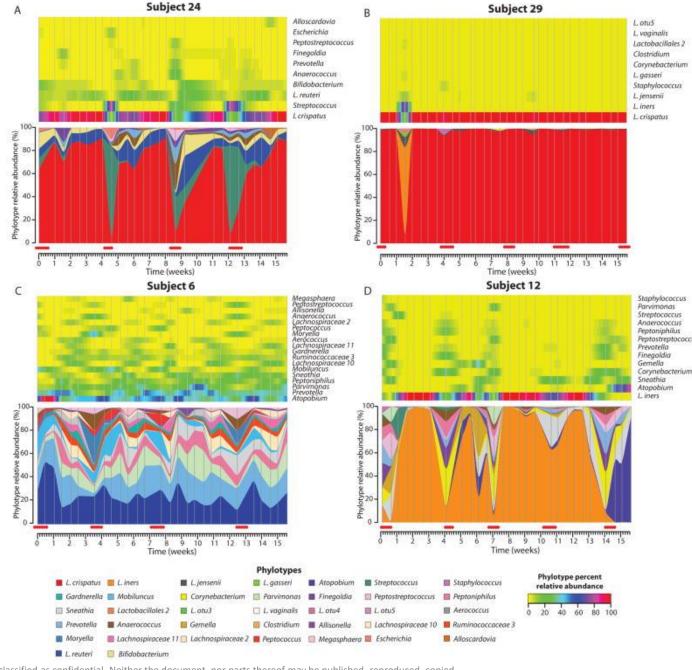

Vaginal microbiome

 Longitudinal research shows variation of the vaginal microbiome over time¹.

> One of the high diversity subgroups was characterized by high Nugent scores (i.e. BV).

> • The *L. iners-*dominated vaginal microbiome is most prevalent in this population. The association of *L. iners* with health remains unclear, occurring in both dysbiotic and healthy states².

 The L. crispatus-dominated and L. gasseri-dominated microbiomes are most stable and associated with lowest Nugent scores.

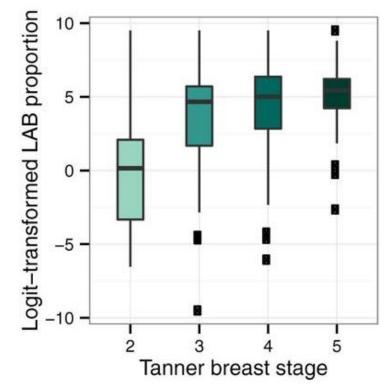


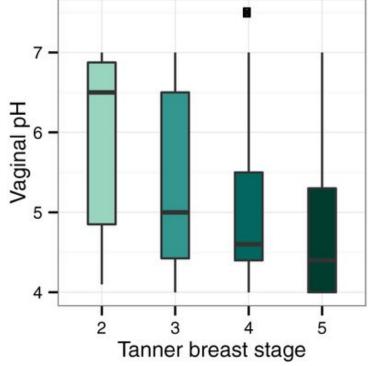
^{1.} Gajer, P. et al. Sci Transl Med 4, 132ra52 (2012)

^{2.} Verstraelen, H. et al. Journal of Lower Genital Treet 设施程序306 闭头包配孔ment are property of Microbiome Center and are classified as confidential. Neither the document, nor parts thereof may be published, reproduced, copied, made public, or distributed without explicit written permission of Microbiome Center. This content shall not be considered medical advice and is provided for information purpose only. The content is exclusively intended for health care professionals.

Vaginal microbiome

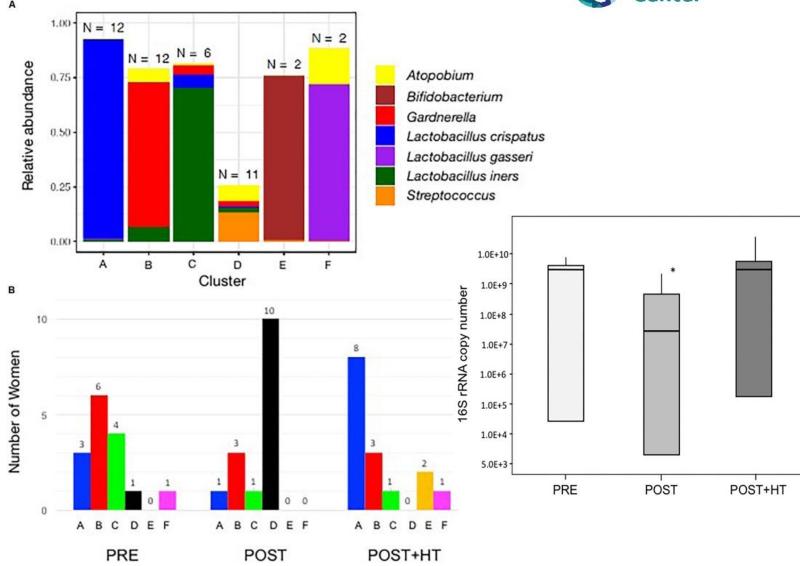
- Menses is major disturbing factor during the menstrual cycle^{1,2:}
 - *L. crispatus* abundance declines during menses
 - *L. iners* concentrations increase along with *Gardnerella vaginalis* and is the dominant species during menses.
 - There is certain "dynamic stability": most women retain their typical state or alternate between states.
 - Alternation is aligned with menses.


^{1.} Gajer, P. et al. Sci Transl Med 4, 132ra52 (2012)


^{2.} Verstraelen, H. et al. Journal of Lower Genital Tract 设施程序306 闭孔 40024 ment are property of Microbiome Center and are classified as confidential. Neither the document, nor parts thereof may be published, reproduced, copied, made public, or distributed without explicit written permission of Microbiome Center. This content shall not be considered medical advice and is provided for information purpose only. The content is exclusively intended for health care professionals.

Vaginal microbiome: prepuberty/premenarche

- Longitudinal research shows transition of vaginal microbiome from premenarche (~11y/o) to post-menarche¹.
- BV-like microbiome gradually shifts toward an adult-like Lactobacillus-dominated microbiome¹:
 - In almost all girls the microbiome changed to Lactobacillus-dominant after menache. In some girls already at baseline.
 - Transition occurred before or shortly after menarche
 - Various trajectories occur, e.g. L. iners-dominated to L. crispatus-dominated.



Vaginal microbiome: postmenopausal

- Estrogen levels strongly affect the vaginal microbiota^{1,2}.
- Research on the postmenopausal vaginal microbiome is scarce. One study found marked differences between¹:
 - Premenopausal
 - Postmenopausal
 - Postmenopausal with hormone replacement therapy
- Postmenopausal women had:
 - Much more diverse microbiome without a single dominant species and few lactobacilli
 - 10x lower total abundance

Gliniewicz, K. et al. Frontiers in Microbiology 10, (2019)

^{2.} Verstraelen, H. et al. Journal of Lower Genital TT神社 的解音解系统 闭头检验</mark>ment are property of Microbiome Center and are classified as confidential. Neither the document, nor parts thereof may be published, reproduced, copied, made public, or distributed without explicit written permission of Microbiome Center. This content shall not be considered medical advice and is provided for information purpose only. The content is exclusively intended for health care professionals.

Vaginitis: various causes

Distinctions between causes of vaginitis

Signs and	Symptoms	of V	aginitis
-----------	-----------------	------	----------

Etiology	Symptoms	Signs	Other risks
Anaerobic bacteria (Prevotella, Mobiluncus, Gardnerella vaginalis, Ureaplasma, Mycoplasma)	Fishy odor; thin, homog- enous discharge that may worsen after intercourse; pelvic discomfort may be present	No inflammation	Increased risk of HIV, gonor- rhea, chlamydia, and herpes infections
Candida albicans, can have other Candida species	White, thick, cheesy, or curdy discharge; vulvar itching or burning; no odor	Vulvar erythema and edema	_
Trichomonas vaginalis	Green or yellow, frothy discharge; foul odor; vaginal pain or soreness	Inflammation; strawberry cervix	Increased risk of HIV infection Increased risk of preterm labor Should be screened for other sexually transmitted infection
Estrogen deficiency	Thin, clear discharge; vag- inal dryness; dyspareunia; itching	Inflammation; thin, friable vagi- nal mucosa	_
Contact irritation or aller- gic reaction	Burning, soreness	Vulvar erythema	_
Possibly autoimmune	Purulent vaginal discharge, burning, dyspareunia	Vaginal atrophy and inflammation	Associated with low estrogen levels
	Anaerobic bacteria (Prevotella, Mobiluncus, Gardnerella vaginalis, Ureaplasma, Mycoplasma) Candida albicans, can have other Candida species Trichomonas vaginalis Estrogen deficiency Contact irritation or aller- gic reaction	Anaerobic bacteria (Prevotella, Mobiluncus, Gardnerella vaginalis, Ureaplasma, Mycoplasma) Candida albicans, can have other Candida species Trichomonas vaginalis Estrogen deficiency Contact irritation or allergic reaction Possibly autoimmune Fishy odor; thin, homogenous discharge that may worsen after intercourse; pelvic discomfort may be present White, thick, cheesy, or curdy discharge; vulvar itching or burning; no odor Trichomonas vaginalis Green or yellow, frothy discharge; foul odor; vaginal pain or soreness Estrogen deficiency Burning, soreness	Anaerobic bacteria (Prevotella, Mobiluncus, Gardnerella vaginalis, Ureaplasma, Mycoplasma) Candida albicans, can have other Candida species White, thick, cheesy, or curdy discharge; vulvar itching or burning; no odor Trichomonas vaginalis Green or yellow, frothy discharge; foul odor; vaginal pain or soreness Contact irritation or aller- gic reaction Fishy odor; thin, homog- enous discharge that may worsen after intercourse; pelvic discomfort may be present Vulvar erythema and edema Inflammation; strawberry cervix Strawberry cervix Vilvar erythema Vilvar erythema and edema Vulvar erythema Vulvar erythema

Poll 1

- How often do you see patients with vaginal complaints in your practice?
 - 1. Every day
 - 2. Every week
 - 3. Every month
 - 4. Never

Poll 2

- Do you ask female patients about vaginal complaints?
 - 1. Always
 - 2. Sometimes (e.g. if I suspect a problem)
 - 3. Only if she reports vaginal problems
 - 4. Never

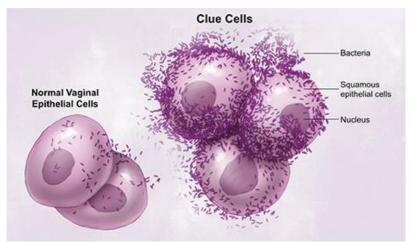
Bacterial vaginosis

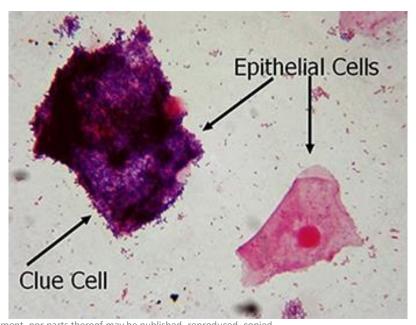
Diagnosis of bacterial vaginosis

- "Vaginosis" is vaginal form of dysbiosis but is not characterized by typical inflammatory changes generally implied by the suffix '-itis'1.
- Diagnosis of BV can be done using various criteria²:
 - **Nugent score**. Vaginal smears plated. Minimum of 10 high power fields examined for three bacteria morphotypes: *Lactobacillus, Gardnerella*, and curved gram rods. Each category receives score for cell count. Scores added together and:
 - 0-3: negative for BV
 - 4–6: intermediate
 - 7+: positive for BV

Method is cumbersome.

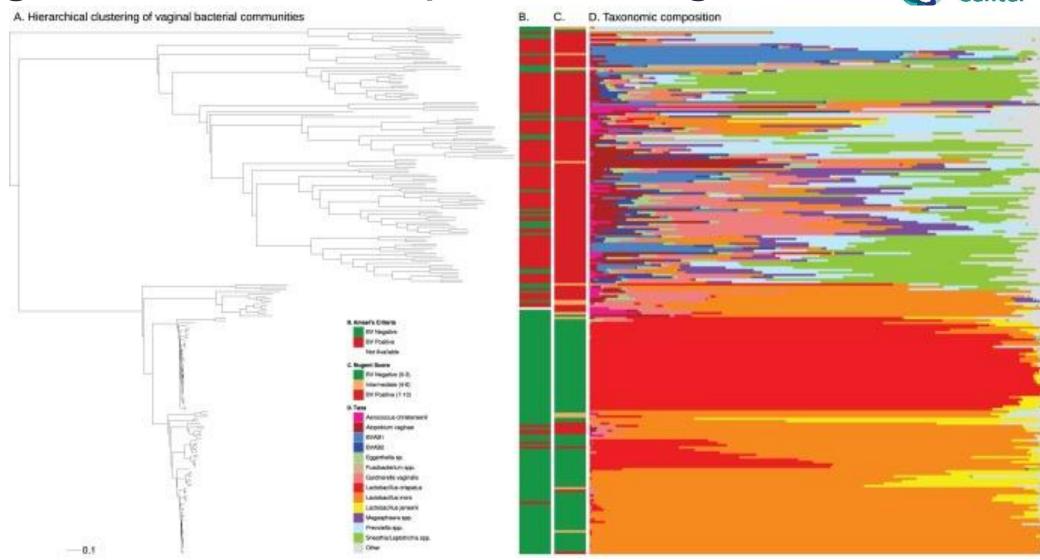
- **Amsel criteria**. There are four parameters used to determine the presence or absence of BV. These are:
 - Thin, white, yellow, homogeneous discharge
 - Clue cells on wet mount microscopy
 - a vaginal fluid pH of over 4.5 when placing the discharge on litmus paper
 - Release fishy odor after adding 10% potassium hydroxide (KOH) solution to wet mount also known as "whiff test."


More practical when there is limited diagnostician's microscopic experience, availability of microscope tools, or time. Meeting three (or two) criteria is considered positive for BV.


made public, or distributed without explicit written permission of Microbiome Center. This content shall not be considered medical advice and is provided for information purpose

only. The content is exclusively intended for health care professionals

- Some women do not report symptoms even tough diagnostic criteria are met. Many women with BV may consider their discharge to be normal.
- 1. Schellenberg, J. J. et al. Research in Microbiology 168, 837–844 (2017)
- 2. Colonna, C. et al. in StatPearls (StatPearls Publishing, 2022)
- 3. Lev-Sagie, A. et al. Journal of Lower Genital Tract Disease 26, 79 (2022) the contents of this document are property of Microbiome Center and are classified as confidential. Neither the document, nor parts thereof may be published, reproduced, copied,



Vaginal microbiome: healthy vs bacterial vaginosis

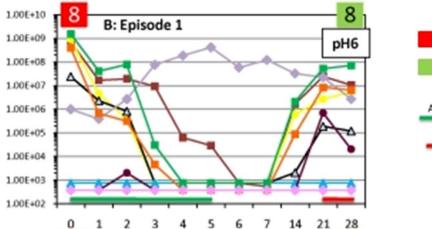
Poll 3

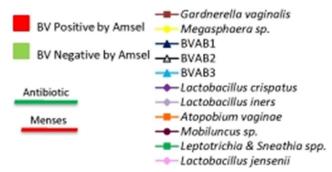


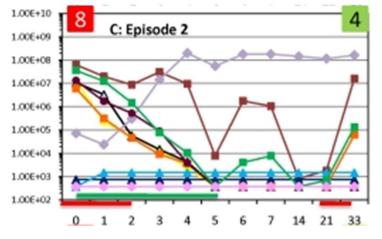
- Would you conduct a vaginal microbiome analysis, or pragmatically start treatment?
 - 1. The test does not influence the treatment, so I always immediately start with treatment.
 - 2. For vaginal complaints I pragmatically start with treatment, but for e.g. fertility problems I prescribe a vaginal microbiome analysis first.
 - 3. I want to know if there is a dysbiosis before starting any treatment, so I always prescribe vaginal analysis first.
 - 4. Other

Traditional treatment of BV and recurrence

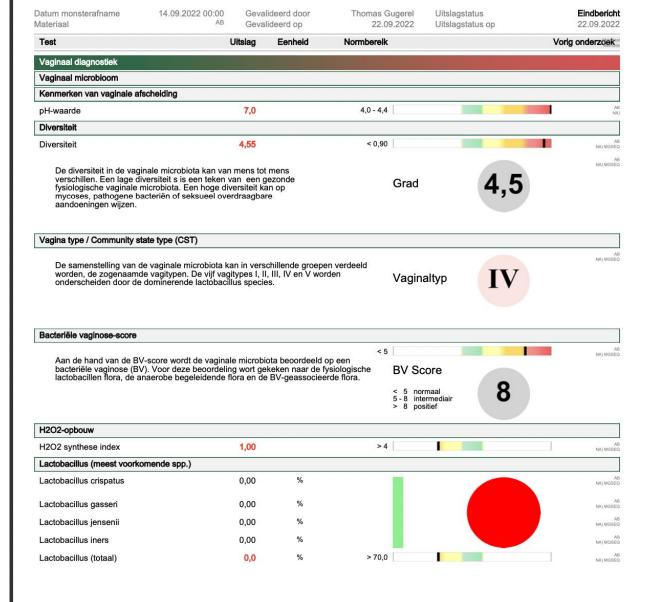
- According to guidelines BV is usually treated with antibiotics¹.
 - The reported initial cure rate in studies is high (80-90%)
 - The recurrence rate is high, ranging from 15-30% after treatment to 60-80% after 9 months
- One hypothesis for recurrence is reinfection with associated microbes via sexual partners¹:
 - But: treatment of partners does not reduce recurrence rates.
 - Recurrence can also be due to relapse or ineffective treatment.
- This is indirect evidence that susceptibility may be a more important factor. A disturbed vaginal microbiome plays a role:
 - Indeed, the *Lactobacillus* relative composition is prognostic of cure rate and recurrence rate².


F = not cured after AB treatment
R = recurrent (initially cured, but relapse)
M = cured


^{1.} Coudray, M. S. et al. Eur J Obstet Gynecol Reprod Biol 245, 143–148 (2020)


Vaginal microbiome: healthy vs bacterial vaginosis

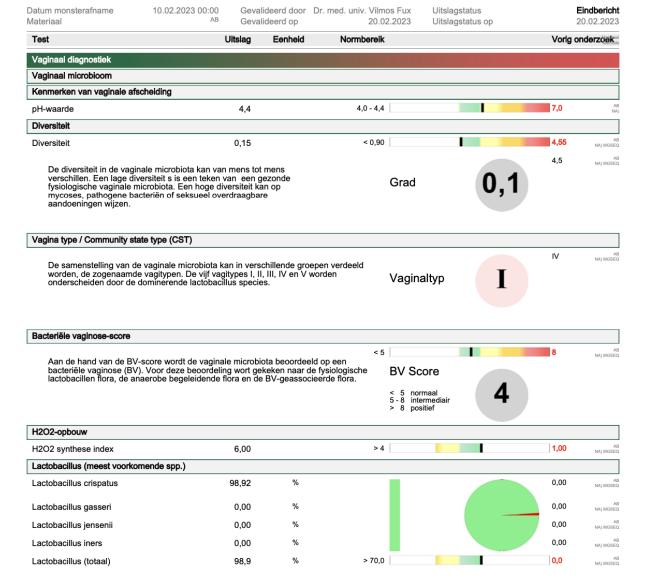
- In women without BV1:
 - Vaginal microbiome is relatively stable
 - Disturbance occurs during menses
 - BV-associated Gardnerella vaginalis can be present and increase during menses
- In women with BV¹:
 - Typically BV-associated species dominate (undefined species from Clostridiales order) and/or composition is diverse.



Case report 1: BV

Woman, 75 years old

- Recurrent UTIs: complaints of dry vagina, slight burning sensation vagina (not when urinating), dyspareunia, urine stick nitrite pos
- Bowel: flatulence, diarrhea, histamine symptoms (headache, fuzzy, tired).
- Treatment: vitC, cranberry, D-mannose, solidago.
- Gut microbiome: MyOwnBlend after which bowels improved (headache and fatigue were gone) but vaginal complaints not yet.
- Vaginal microbiome analysis requested.
- Awaiting results: Vagifem (estogens), probiofem Bonusan inserted vaginally.
- Results analysis.


Oomaam	Demise Cesi	acrit	vrouwenjk	mgangsdatum	14.00.202
Test	Uitslag	Eenheid	Normbereik		Vorig onderzoel
Bacteriën geassocieerd met bacteriëi	-				
Atopobium vaginae	0,00	%	< 0,01		NA) MGS
BVAB*-1	0,00	%	< 0,01		NA) MGS
BVAB*-2	0,00	%	< 0,01		NA) MGS
BVAB*-3	0,00	%	< 0,01		NA) MGS
Bacteroides fragilis	0,00	%	< 0,01		NA) MGS
Gardnerella vaginalis	0,00	%	< 0,01		NA) MG
Megasphaera spp.	0,00	%	< 0,01		NA) MG
Eggerthella spp.	0,00	%	< 0,01		NA) MGI
Aerococcus christensenii	0,00	%	< 0,01		NA) MG
Dialister micraerophilus	0,55	%	< 0,01		NA) MG
Prevotella spp.	23,03	%	< 0,01		NA) MGI
Dialister invisus	0,55	%	< 0,01		NA) MG
Mobiluncus spp.	0,00	%	< 0,01		NA) MG
Anaërobe bacteriën					NA) MG
Anaerococcus spp.	14,17	%	< 0,01		NA) MG
Bacteroides spp.	12,10	%	< 0,01		NA) MG
Corynebacterium spp.	4,68	%	< 0,01		NA) MG
Escherichia spp.	12,02	%	< 0,01		NA) MG
Finegoldia spp.	2,09	%	< 0,01		
Gemella spp.	0,00	%	< 0,01		NA) MG
Lachnospiraceae	0,60	%	< 0,01		NA) MG
Mycoplasma spp.	0,00	%	< 0,01		NA) MG
Parvimonas spp.	0,00	%	< 0,01		NA) MG
Sneathia spp.	0,00	%	< 0.01		NA) MG
Streptococcus spp.	0,00	%	< 0,01		NA) MG
Ureaplasma spp.	0,00	%	< 0,01		NA) MG
Veillonella spp.	0,00	%	< 0,01		NA) MG
		%	< 0,01		NA) MG
Overig Candidiasis	30,16	76			NA) MG
Candidasis Candida albicans	nagatiof		negatief	_	
	negatief		negatief		NA) G
Candida dubliniensis	negatief				NA) G
Candida glabrata	negatief		negatief		NA) G
Candida krusei	negatief		negatief		NA) G
Candida lusitaniae	negatief		negatief		NA) G
Candida parapsilosis	negatief		negatief		NA) Q
Candida tropicalis	negatief		negatief		NA) QI

The contents of this document are property of Microbiome Center and are classified as contents. Neither the document, nor parts thereof may be published, reproduced. copied. made public. or distribited എൻറ്റെ എൻറ്റെ Microbiome Center. This content shall not be considered medical advice and is provided for information purpose or some Twe Content is exclusively intended for health care professionals.

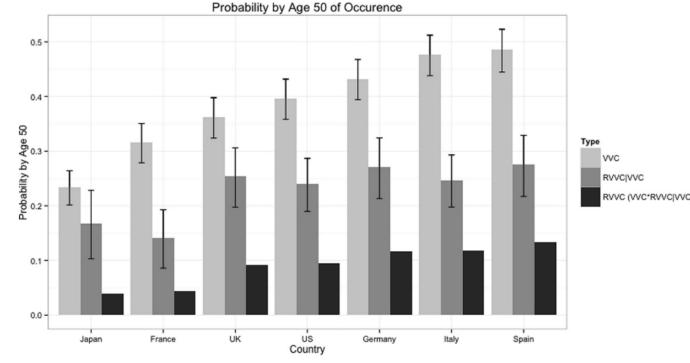
Case report 1: BV

- Started ovules.
- Feels almost normal now, almost no more complaints vaginally.
- Personally feels ovules have done a lot.
- Repeat measurement

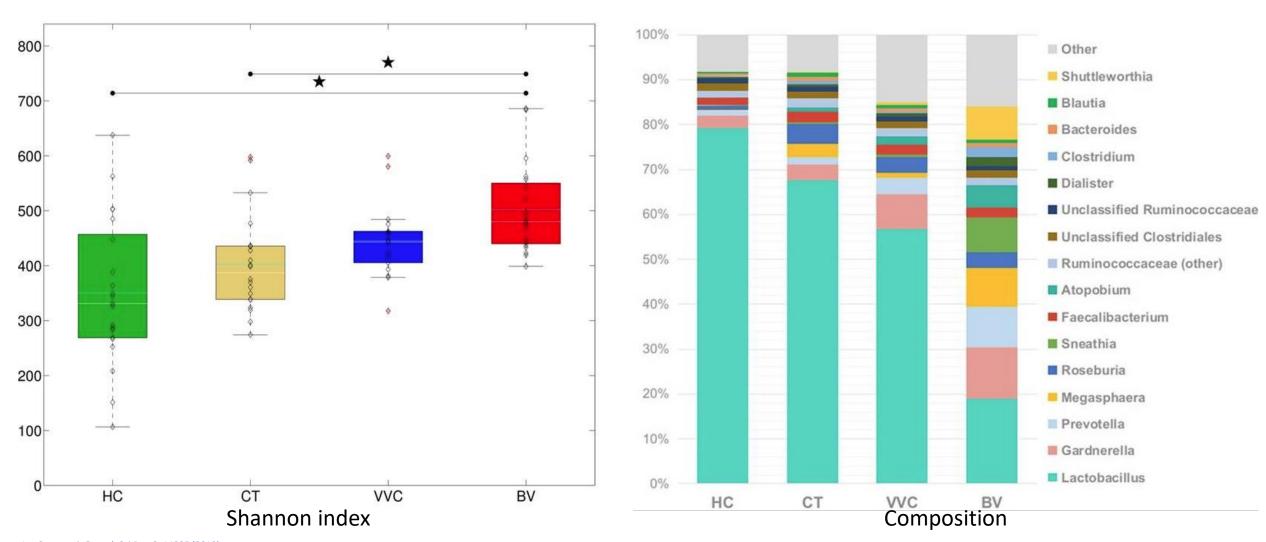
Гest	Uitslag	Eenheid	Normbereik	Vorig one	lerz
Bacteriën geassocieerd met bacteriële va	ginose				
Atopobium vaginae	0,00	%	< 0,01	0,00	NA
BVAB*-1	0,00	%	< 0,01	0,00	NA
BVAB*-2	0,00	%	< 0,01	0,00	NA
BVAB*-3	0,00	%	< 0,01	0,00	NA
Bacteroides fragilis	0,00	%	< 0,01	0,00	NA
Gardnerella vaginalis	0,00	%	< 0,01	0,00	NA.
Megasphaera spp.	0,00	%	< 0,01	0,00	NA.
Eggerthella spp.	0,00	%	< 0,01	0,00	NA.
Aerococcus christensenii	0,00	%	< 0,01	0,00	NA.
Dialister micraerophilus	0,01	%	< 0,01	0,55	NA.
Prevotella spp.	0,04	%	< 0,01	23,03	
Dialister invisus	0,01	%	< 0,01	0,55	NA.
Mobiluncus spp.	0.00	%	< 0,01	0,00	NA
vnaërobe bacteriën	-,				NA
Anaerococcus spp.	0,20	%	< 0,01	14,17	NA
Bacteroides spp.	0,00	%	< 0,01	12,10	
Corynebacterium spp.	0,00	%	< 0,01	4,68	NA
Escherichia spp.	0,00	%	< 0,01	12,02	NA
inegoldia spp.	0,02	%	< 0,01	2,09	NA
Gemella spp.	0,00	%	< 0,01	0,00	NA
achnospiraceae	0,00	%	< 0.01	0,60	NA
/lycoplasma spp.	0,00	%	< 0,01	0,00	NA
Parvimonas spp.	0,00	%	< 0.01	0,00	NA
Sneathia spp.	0,00	%	< 0,01	0,00	NA
Streptococcus spp.	0,00	%	< 0.01	0,00	NA
		%	< 0.01	0,00	NA
Jreaplasma spp.	0,00		< 0,01	0,00	NA
/eillonella spp.	0,00	%	< 0,01	30,16	NA
Overig	0,81	%		30,10	NA
Candidiasis Candida albicans	negatief		negatief	negativ	
	•		negatief	negativ	N
Candida dubliniensis	negatief				N
Candida glabrata	negatief		negatief	negativ	N
Candida krusei	negatief		negatief	negativ	N
Candida Iusitaniae	negatief		negatief	negativ	N
Candida parapsilosis	negatief		negatief	negativ	N
Candida tropicalis	negatief		negatief	negativ	N

The contents of this document are property of Microbiome Center and are classified as confidential. Neither the document, nor parts thereof may be published, reproduced, copied, made public, or distributed with and sexplicit and included in Microbiome Center. This content shall not be considered medical advice

Microbiome Center . NL-. .

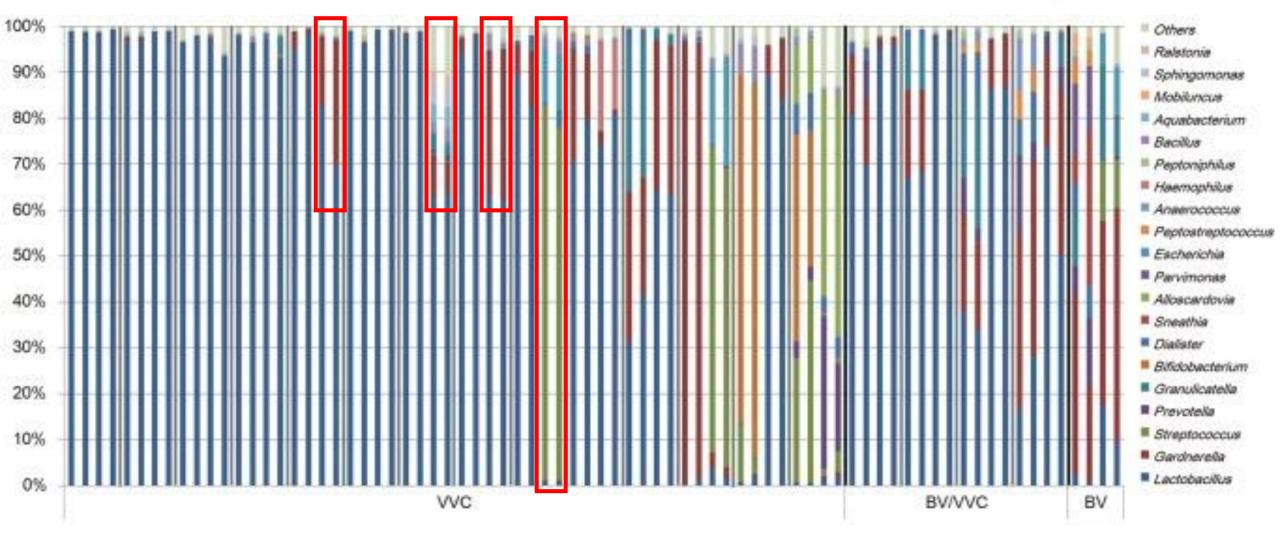

Vulvovaginal candidiasis

Vulvovaginal candidiasis


Vulvovaginal candidiasis¹:

- Is most often caused by C. albicans (85-90%), sometimes by other candida species.
- Is characterized by vulvar erythema, excoriation, pruritus, and an abnormal "cheese-like" or watery vaginal discharge.
- Diagnosis is not straightforward: defined by combination of nonspecific vaginal symptoms and presence of yeast that is commensal.
 - Is often diagnosed and treated empirically, with much self-diagnosis and treatment.
- Has high cumulative incidence: 23-49% at age of 50.
- Is typically treated with vaginal azoles.
- Has often recurrence (50-60% within 1-2 years)

Vaginal microbiome: healthy vs VVC



1. Ceccarani, C. et al. Sci Rep 9, 14095 (2019)

VVC: treatment may lead to <u>less</u> healthy microbiome

1. Liu, M.-B. et al. PLoS One 8, e79812 (2013)

Case report 2: VVC + BV

- Woman 22 years old
- Alternating vaginal complaints due to candida or due to bacterial vaginosis
- Was prescribed vaginal suppositories
- Were they easy to use?
 - "There seems to be some kind of coating over them that makes it easy. It doesn't hurt either."
- Did you experience any side effects?
 - "I did not experience any side effects."
- Have they had the desired effect?
 - "The suppositories often had the desired effect, especially with vaginal yeast infections. With bacterial infections, it seems to come back more quickly."

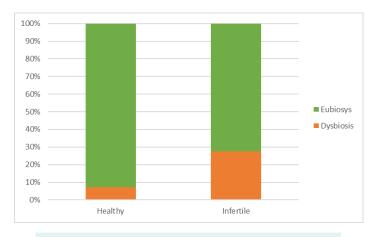
Case report 3: VVC

- Women 40 years, doctor
- Recurring yeast infections, for which she preferred not to use medication.
- Prescribed vaginal suppositories to herself

Her findings:

"The symptoms of itching and crumbly discharge were over very quickly. I used the ovules for over a week, and then I got my period and didn't use them. Now I have used 1 more ovule twice on the day after my period, and that has ensured that to date both the Candida and an unpleasant odor stay away.

So, I would definitely recommend the ovules"



Fertility

Role in fertility and pregnancy

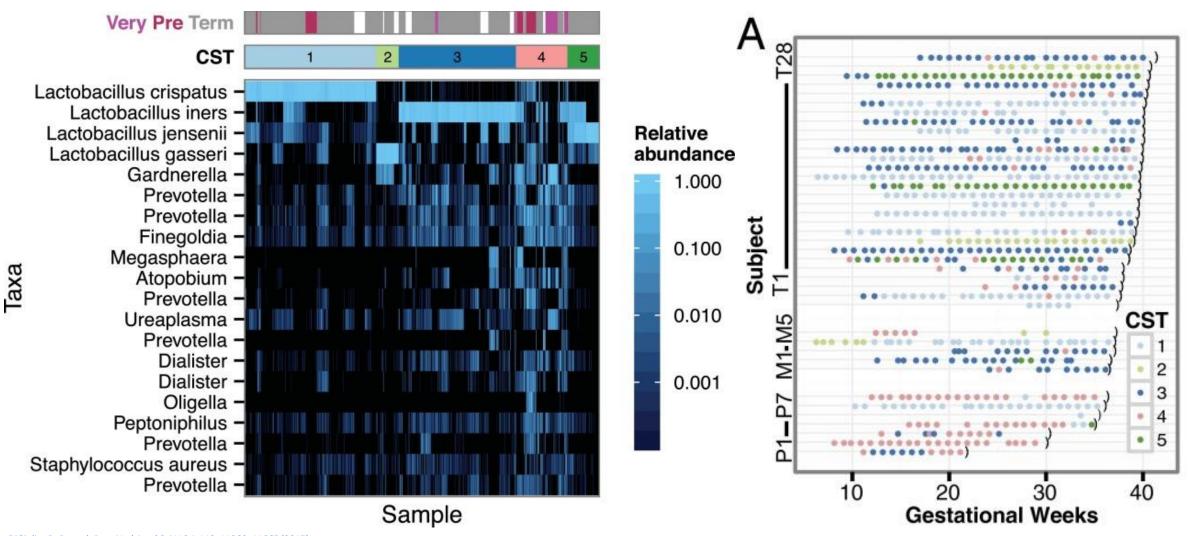
- A canonical (culture-based) study on fertility found higher prevalence of vaginal dysbiosis in infertile women compared to healthy controls without genealogical problems (figure)^{1,2}.
 - Only 3.5% of infertile women had Lactobacillus species.
- Similar results were found in study with IVF patients³.
 - Notably, women with abnormal vaginal microbiome had much less successful pregnancy (figure).
 - L. crispatus was found in 59% of women with normal microbiome vs. 12% in intermediate and 0% in BV.
- Some studies do not find clear associations¹

Table IV qPCR classification of vaginal microbiota (VM) and reproductive outcome of IVF patients.

· · · · · · · · · · · · · · · · · · ·		
	Biochemical pregnancy	Clinical pregnancy
Normal VM (N = 62)	32 (52)	27 (44)
Abnormal VM (N = 22)	6 (27)	2 (9)
Data are n (percent of patients of	per row)	

Table V Nugent score, reproductive outcome of IVF patients.

	Biochemical pregnancy	Clinical pregnancy
Normal flora (N = 60)	30 (50)	24 (40)
Intermediate ($N = 12$)	6 (50)	4 (33)
BV (N = 12)	2 (17)	I (8)


^{1.} Hong, X. et al. Arch Gynecol Obstet 302, 569–578 (2020)

^{2.} Babu, G. et al. J Clin Diagn Res 11, DC18—DC22 (१९४२) Intents of this document are property of Microbiome Center and are classified as confidential. Neither the document, nor parts thereof may be published, reproduced, copied,

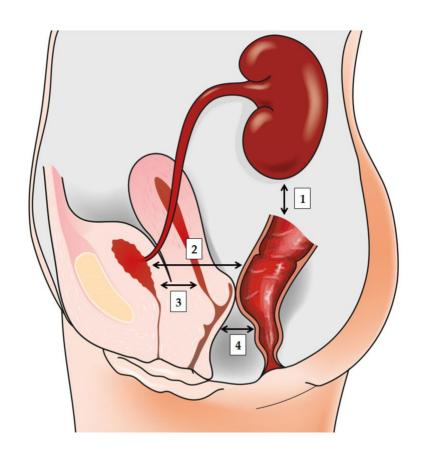
^{3.} Haahr, T. et al. Hum. Reprod. 31, 795–803 (2016) nade public, or distributed without explicit written permission of Microbiome Center. This content shall not be considered medical advice and is provided for information purpose only. The content is exclusively intended for health care professionals.

Preterm delivery is associated with highly diverse vaginal microbiome¹

^{1.} DiGiulio, D. B. et al. Proc Natl Acad Sci U S A 112, 11060–11065 (2015)

Case report 4: IVF

- Woman 35 years old
- Since 2015 stress-related disturbance of cycle, endometriosis, failed intrauterine insemination and two IVF attempts (low yield). Over 4 years of unfulfilled pregnancy wish.
- Estrogen breakdown problem, methylation only 3%.
- After low-dose naltrexone (LDN) with exorphin-free diet, recovery of stress and immune system. Improvement of methylation with B vitamins and NAC.
- IVF yield suddenly very good (17 oocytes), 6 months after setting LDN pregnant. Labor after 38 weeks with cesarean section, son in 2020.
- For second pregnancy again setting up LDN from April till June 2020 with methylation support.
- From June also used vaginal suppositories. Also around embryo transfer.
- Immediately pregnant! Calculated to give birth in April 2023.



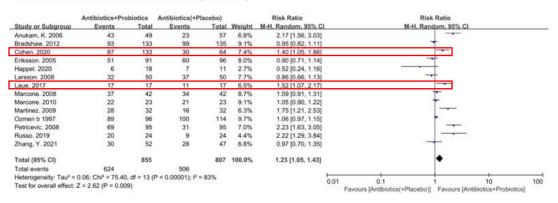
Urinary tract infections

Role in urinary tract infections

- Historically, role of gut microbes in UTIs has been recognized:
 - Via contamination of the periurethral space by uropathogens residing in the gut¹. In most cases UTI is caused by pathogenic *E. coli* strains.
- More recently, the role of the vaginal microbiome has been identified too.
 - In fact, various axes are identified¹.
- Lactobacilli (most notably *Lactobacillus crispatus*) of the vaginal microbiome can inhibit *E. coli* growth¹.
 - In women with UTIs, there is often no lactobacillidominance and/or a dysbiotic vaginal microbiome².
- Antibiotic use can increase risk of UTI².

Case report 5: UTI

- 70-year-old woman
- Recurrent urinary tract infections; 2022 5 x AB, 2023 3 x AB
- Has been using vaginal estrogens for a while.
- No intestinal issues, therefore, no consideration of microbiome analysis or treatment.
- Treatment with vaginal suppositories for one month, starting in March 2023.
- August 2023: 19 week free of UTI's


Treatment with probiotics

Probiotics for bacterial vaginosis

- Several meta-analyses on probiotics for treatment of bacterial vaginosis are published.
- One meta-analoysis from 2022 includes 14 studies with 2093 participants¹:
 - Antibiotics + probiotics are somewhat better than antibiotics alone (RR: 1,23)
 - Probiotics are much better than placebo (RR 15,2)
 - Half of studies used oral administration
 - Only 2 studies use a *L. crispatus* strain.

A. Antibiotics + Probiotics/Antibiotics (+Placebo)

B. Probiotics/Antibiotics.

	Probio	tics	Antibio	otics		Risk Ratio		Risk	Ratio	
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% C		M-H. Ran	dom. 95% CI	
Anukam, K. C. 2006	11	20	6	20	24.3%	1.83 [0.84, 3.99]			-	
Ling, Zongxin. 2013	24	25	21	30	37.3%	1.37 [1.07, 1.76]			-	
Ozmen a 1997	57	97	100	114	38.4%	0.67 [0.56, 0.80]		•		
Total (95% CI)		142		164	100.0%	1.12 [0.60, 2.07]		-	•	
Total events	92		127							
Heterogeneity: Tau ² =	0.25; Chi ²	= 24.9	0, df = 2	P < 0.0	0001); l2 =	92%	0.01	0.4	1 10	100
Test for overall effect:	Z = 0.35 (P = 0.7	2)				0.01	0.1 Favours [antibiotics]	1 10 Favours [probiotics]	100

C. Probiotics/Placebo.

	Probio	tics	Place	bo		Risk Ratio		Risk	Ratio	
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% C	1	M-H. Fixe	ed. 95% CI	
Hallén. 1992	9	18	1	16	47.2%	8.00 [1.13, 56.41]				
Mastromarino. 2009	14	24	0	10	30.9%	12.76 [0.83, 195.36]		-	-	
Vicariotto. 2014	16	28	0	29	21.9%	34.14 [2.15, 543.06]				
Total (95% CI)		70		55	100.0%	15.20 [3.87, 59.64]			-	
Total events	39		1							
Heterogeneity: Chi ² =	0.76, df =	2 (P = 0	0.68); I ² =	0%			1 000		10	+
Test for overall effect:	Z = 3.90 (P < 0.0	001)				0.002	0.1 1 Favours [placebo]	Favours [probiotics]	500

Probiotics for vulvovaginal candidiasis

- A review from 2019 includes 14 studies using probiotics against VVC¹:
 - The results are in general positive, although they are strain-specific.
- Two open label studies with vaginal product containing *L. acidophilus* LaO2 showing^{2,3}:
 - LaO2 inhibits growth of various candida species
 - Administered 1dd for one week, then 1x per 3 days for three weeks, and finally once a week during second month.
 - Vaginal product cured vulvovaginal candidiasis in >86% of the women after 1 month and in >76% after two months².
 - Prevents recurrence of VVC in 72% of women with history of rVVC³.

4.1 | Patients with acute VVC

Multiple studies have demonstrated that probiotics may be beneficial to patients with acute VVC treated with standard antifungals by improving vaginal symptoms. Kovachev et al. compared women with

TABLE 1. Clinical Outcome (Efficacy Analysis) of Study **Population**

	n/N	(%)	
Time	Cure	Recurrence	
Prophylactic phase			
I phase—10 d	58/57 (98.3)	58/1 (1.7)	
II phase—10 wk	57/49 (86.0)	57/8 (14.0)	
Observation phase (mo)			
1	49/45 (91.8)	49/4 (8.2)	
3	45/43 (95.6)	45/2 (4.4)	
7	43/42 (97.7)	43/1 (2.3)	
Cumulative rate	58/42 (72.4)	58/16 (27.6)	

TABLE 3. Overview of Data and Statistical Analysis							
Parameters	Time 0	Time 28	p (T28 vs. T0)	Time 56	p (T56 vs. T0)	p (T56 vs. T28)	
Total women with infection	30	4	< 0.001	7	< 0.001	_	
Total women without infection	0	26	_	23	_	_	
Percentage of healing	_	86.67%	_	76.67%	_	_	
Total women with recurrences	_	0	_	3	_	0.083	
Percentage of recurrences	_	_	_	11.54%	_	_	

Shenoy, A. et al. Dermatologic Therapy e12970 (2019)

Vicariotto, F. et al. Journal of Clinical Gastroenterology 46, S73-S80 (2012)

Probiotics for urinary tract infections

- A study with a *L. crispatus* strain shows reduced risk for recurring UTI after 10w, compared to placebo¹.
- Women who had high levels of L. crispatus colonization, had substantial lower risk of recurrent UTI than women with low levels of colonization.

Table 2. Urinary Tract Infection Rates by Intervention and Lactobacillus crispatus Colonization Pattern

Intervention	No. (%) of participants developing recurrent UTI	Relative risk (95% CI)
Lactin-V ($n = 48$)	7 (15)	.5 (.2–1.2)
Placebo ($n = 48$)	13 (27)	•••
Intervention, L. crispatus colonization pattern		
Lactin-V, high level $(n = 41)$	2 (5)	.07 (.02–.3)
Lactin-V, low level $(n = 7)$	5 (71)	•••
Placebo, high level ($n = 32$)	9 (28)	1.1 (.4–3.1)
Placebo, low level ($n = 16$)	4 (25)	

^{1.} Stapleton, A. E. et al. Clinical Infectious Diseases 52, 1212–1217 (2011)

- Microbiome Center together with the pharmacist and small group of doctors developed vaginal suppositories.
 - Meant to replace over-the-counter options because:
 - Medical devices (i.e. vaginal applications) no longer allowed to contain live microorganisms¹
 - Most commercial products do not contain *L. crispatus*
 - Often fecal strains being repurposed
 - The only medicine with a *L. crispatus* strain (CTV-05) is still under development and contains only a single strain².

Variable	Lactin-V (N = 152)	Placebo (N = 76)	Risk Ratio (95% CI)*	P Value
	no. (%)		
Status of recurrence	ce by wk 12			
Recurrence †	46 (30)	34 (45)	0.66 (0.44-0.87)	0.01
No recurrence	87 (57)	30 (39)		
Unknown	19 (12)	12 (16)		
Status of recurrence	ce by wk 24			
Recurrence	59 (39)	41 (54)	0.73 (0.54-0.92)	
No recurrence	63 (41)	21 (28)		
Unknown	30 (20)	14 (18)		

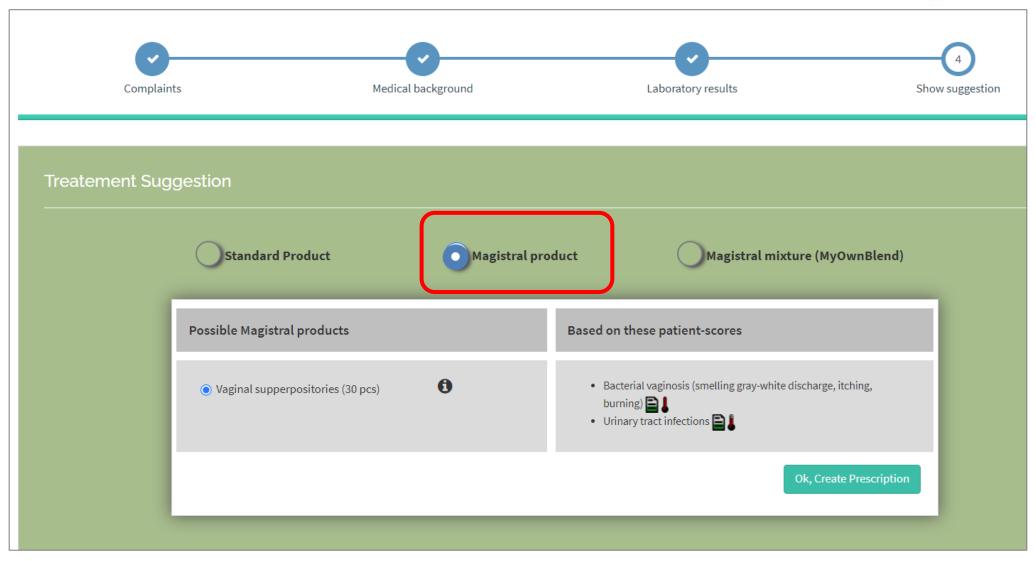
		Pre-clinical	Phase I	Phase II	Phase III
LACTIN-V	Reduce the rate of recurrence of	bacterial vaginosi	s		
	Reduce pre-term birth in women	at high risk of PTE	3		
	Enhance success rates of In vitro	o fertilization			

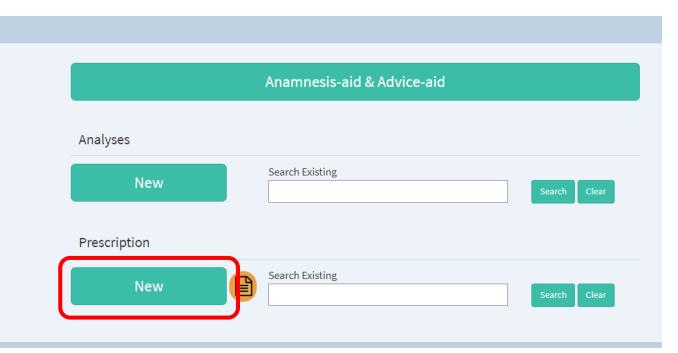
- 6. This Regulation does not apply to:
- (h) products, other than those referred to in points (d), (f) and (g), that contain or consist of viable biological material or viable organisms, including living micro-organisms, bacteria, fungi or viruses in order to achieve or support the intended purpose of the product;

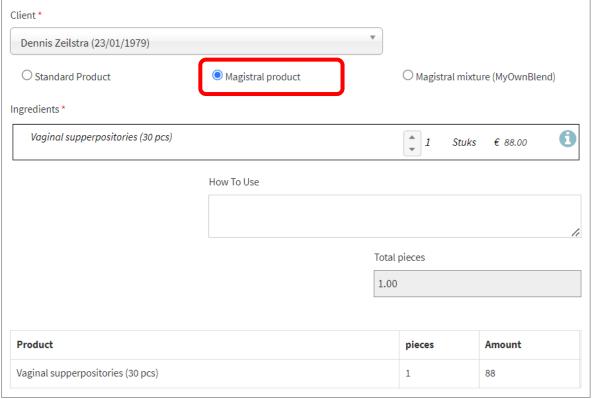
^{1.} European Union. Official Journal of the European union L 117, (2017)

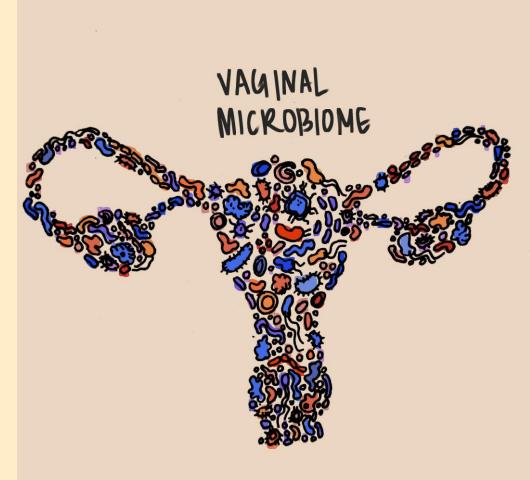
^{2.} Cohen, C. R. et al. N Engl J Med 382, 1906–1915 (2020)
The contents of this document are property of Microbiome Center and are classified as confidential. Neither the document, nor parts thereof may be published, reproduced, copied, made public, or distributed without explicit written permission of Microbiome Center. This content shall not be considered medical advice and is provided for information purpose only. The content is exclusively intended for health care professionals.

- Vaginal suppositories:
 - Contains three active strains:
 - Lactobacillus crispatus SP28 (2.5x10⁹ cfu/ovule)
 - Lactobacillus crispatus LCR01 (2.5x10⁹ cfu/ovule)
 - Lactobacillus acidophilus LaO2 (2.5x109 cfu/ovule)
 - Matrix from cacao butter with coconut butter.
- Available as 30 vaginal suppositories for EUR 88,-
- Includes leaflet with clear instructions



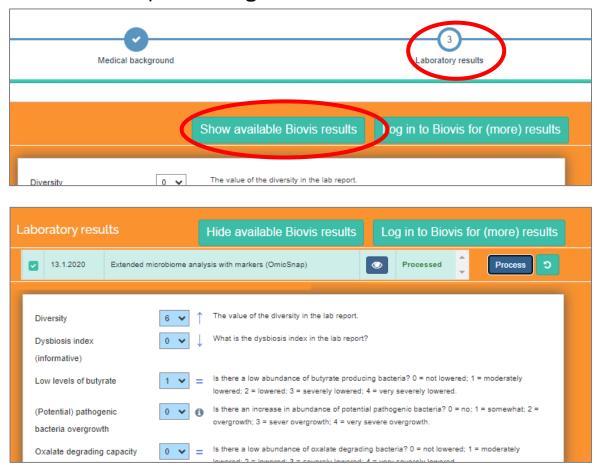


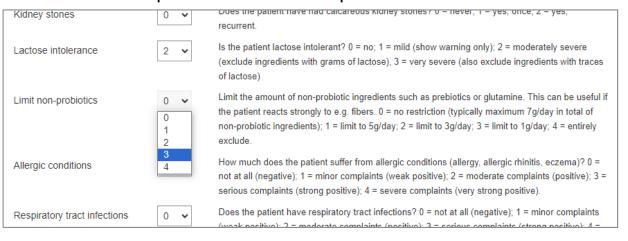

Constipation	3 🗸	Does the patient experience constipation: $0 = no$; $1 = yes$, may skip a days; days; $3 = yes$, defecation every 4-5 days; $4 = yes$, defecation every 6 days $a = yes$			
Diarrhea	0 🗸	How often does the patient experience diarrhea? 0 = never; 1 = once ever week; 3 = two-three times per week; 4 = four-six times per week; 5 = daily			
Bloating / flatulence	0 🗸	How often does the patient experience bloating/flatulence? 0 = never; 1 = once every week; 3 = two-three times per week; 4 = four-six times per we	once every two weeks; 2 =	0 🗸	Does the patient have osteoporosis: v = no, 1 = y
Abdominal pain (gut related)	0 🗸	How often does the patient have abdominal pain? $0 = \text{never}$; $1 = \text{a}$ few till per week; $3 = \text{daily}$, but not throughout the day; $4 = \text{daily}$ throughout the	Autoimmune diseases	0 🗸	Does the patient have an autoimmune disease? (
Cognition	0 🗸	Does the patient experience cognitive problems? 0 = no; 1 = somewhat; very severe.	Urinary tract infections	4 🗸	How often does the patient have urinary tract inf
Susceptibility to sad mood	5 🗸	Does the patient experience sad mood? 0 = never; 1 = sometimes; 2 = les than half of the time; 4 = most of the time; 5 = always.		0	every two months; 4 = monthly; 5 = almost contin
Increased stress level	1 🗸	Does the patient experience an increased level of stress? $0 = \text{never}$; $1 = \text{so}$ the time; $3 = \text{more than half of the time}$; $4 = \text{most of the time}$; $5 = \text{always}$.	Kidney stones	2	Does the patient have had calcareous kidney sto
Anxiety	0 🗸	Does the patient experience an increased level of anxiety? 0 = never; 1 = the time; 3 = more than half of the time; 4 = most of the time; 5 = always.	Lactose intolerance	4	Is the patient lactose intolerant? 0 = no; 1 = yes.
Fatigue	4 🗸	How severe was the fatigue/exhaustion during the last six months? 0 = s = moderate; 3 = severe; 4 = very severe.	Allergic conditions	0 ~	How much does the patient suffer from allergic c all (negative); 1 = minor complaints (weak positiv
Bacterial vaginosis (smelling gray-white discharge, itching, burning)	4 V 0 1 2 3 4	Does the patient have complaints that are indicative for bacterial vaginos discharge, itching, burning)? 0 = N/A, never; 1 = sometimes; 2 = regularly;			

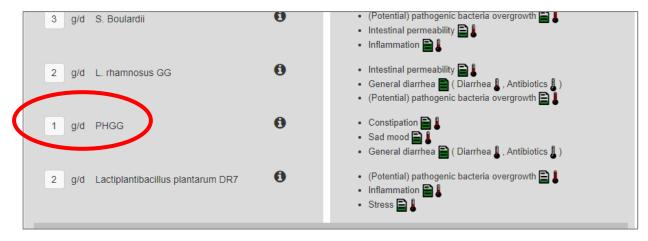


Conclusions and outlook

Conclusions


- Vaginal complaints are very prevalent
- A healthy vaginal microbiome:
 - Is dominated by *Lactobacillus* species
 - Has pH below 4,5
 - Has very low diversity
- Four dominating *Lactobacillus* species are found, with *L. crispatus* most consistently being associated with good health.
- Bacterial vaginosis, vulvovaginal candidiasis, and infertility are characterized by high diversity and elevated pH.
- Probiotics can be effective against BV, VVC and UTIs, depending on strains and route of administration.
- New vaginal suppositories fill gap in market due to regulatory changes, lack of products with *L. crispatus*, and slow developments of pharmaceutical products.
- Use shows good effects in most women, minor side effects (primarily inconvenience).


Advice Aid: continuously improved & fast



Automatic processing of Biovis results

Option to limit non-probiotics

Ingredients are continuously expanded

Barrier

Bifido booster

DJ repair

IL-10 Immune balancer

TH1/TH2 Immune balancer

Pathogene reduction

Yeast reduction

Vitamin K2 booster

Butyraat generator

Microbiotia booster

Bacillus clausii UBBC-07

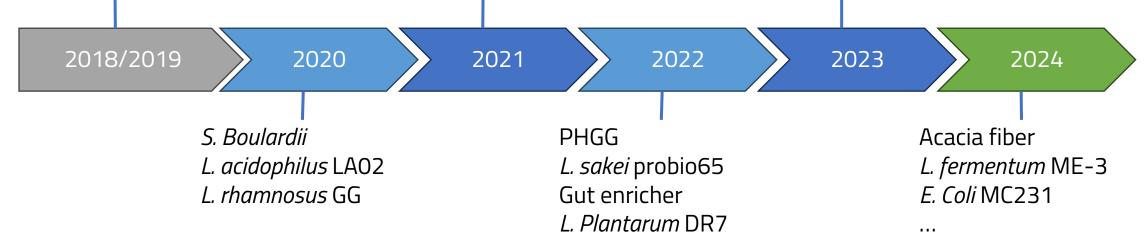
Bacillus coagulans Unique IS-2

Enterococcus faecium Rosell-26 +

Bacillus subtilis Rosell-179

2'-Fucosyllactose

L. plantarum P8


L. rhamnosus SP1

Akkermansia

Bifidobacterium lactis HN019

...

Vaginal suppositories

The contents of this document are property of Microbiome Center and are classified as confidential. Neither the document, nor parts thereof may be published, reproduced, copied, made public, or distributed without explicit written permission of Microbiome Center. This content shall not be considered medical advice and is provided for information purpose only. The content is exclusively intended for health care professionals.

New ingredient

Acacia fiber

Product information:

This prebiotic is derived from the gum of Acacia Senegal trees and consists of over 90% fibers (also known as gum arabic). Research on acacia fibers has been conducted for decades. In MyOwnBlend, a realistically achievable dosage of approximately 5g/day is assumed, but in most clinical studies, a daily dosage of 25g/day or higher has been used. Therefore, the evidence score for many indications is somewhat lower. With this caveat, there is reasonable evidence from an RCT for bloating (1). There is also evidence from several clinical, non-blinded studies for a beneficial effect on constipation (2-4, 18). One of these studies shows a trend of improvement in IBS-C, which can be seen as some degree of evidence for IBS (18). A number of RCTs show an effect on metabolic dysfunction/insulin resistance (including 5-7). Additionally, there is some evidence for an effect in ulcerative colitis (8), inconsistent evidence for an effect on diarrhea (9-11), and some evidence for an effect on periodontitis (12). Furthermore, there is some clinical and in vitro evidence that acacia fibers can increase butyrate production (13, 14). Finally, various open-label studies demonstrate anti-inflammatory effects (including 15-17).

Active components: Organic Acacia Senegal Fiber

Ingredients: Organic Acacia Senegal Fiber

Min:3 g/d, Max:20 g/d

References:

(1) The Effect of Gum Arabic (Acacia senegal) on Cardiovascular Risk Factors and
Gastrointestinal Symptoms in Adults at Risk of Metabolic Syndroms: A Randomized Clinical

Added acacia fiber

The contents of this document are property of Microbiome Center and are classified as confidential. Neither the document, nor parts thereof may be published, reproduced, copied, made public, or distributed without explicit written permission of Microbiome Center. This content shall not be considered medical advice and is provided for information purpose only. The content is exclusively intended for health care professionals.

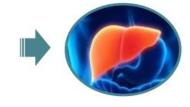
New ingredient: launched this week

In the process of adding *L. fermentum* ME-3

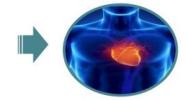
Strong resistance to gastric acidity, bile salts, adhesion to intestinal cells: ME-3 settles in the gut

Increases production of butyrate (anti-inflammatory short-chain fatty acid) Reduces gut epithelium permeability Protects against gut pathogens

Application : gut health


Reduces liver triglycerides (steatosis)
Reduces liver inflammation

Stimulates glutathione production Stimulates PON1 production



Regulates blood glucose levels
Regulates blood lipids (TG, cholesterol)
Reduces oxLDL

Increases antioxidant capacity in plasma

Application: liver health, detoxification

Application: prevention of cardiovascular and metabolic disorders

Calendar

Thematic webinars

- Tuesday September 10th: SIBO part 1 with Frau Anja Pietzsch (DE)
- Monday September 23rd: SIBO part 2 (NL)
- Thursday September 26th: SIBO part 2 (ENG)
- Wednesday October 23rd: Depression (NL)
- Monday October 28th: Depression (ENG)

Thank you for your attention!

For more information, contact:

Barbera Eijgel
Medical support manager MC
barbera@microbiome-center.nl

- 600+ practitioners
- 10k+ patients helped, with 72% positive effect
- Treatment advice in minutes

- Most up-to-date treatment
- Flexibility of choosing ingredients
- All comes in 1 packaging

