

Evidence-based, personalized precision medicine

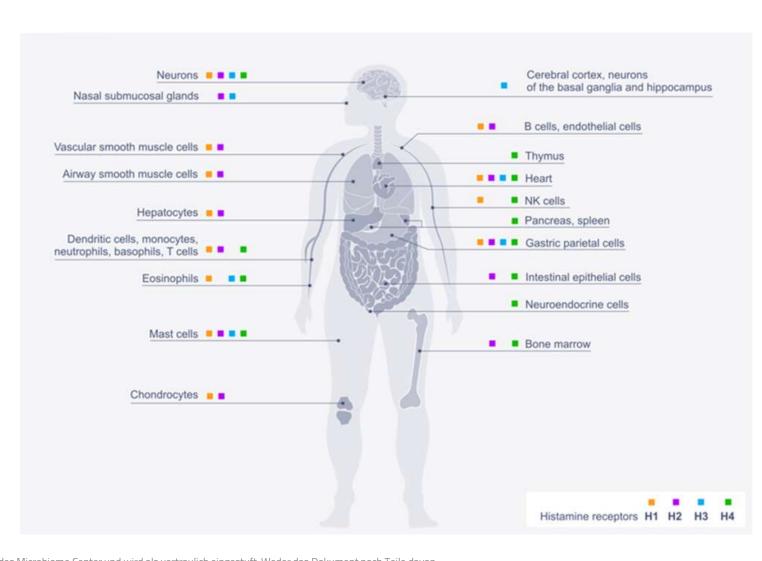
.... helping chronic patients more effectively, in less time.

Histamin

Was ist Histamin?

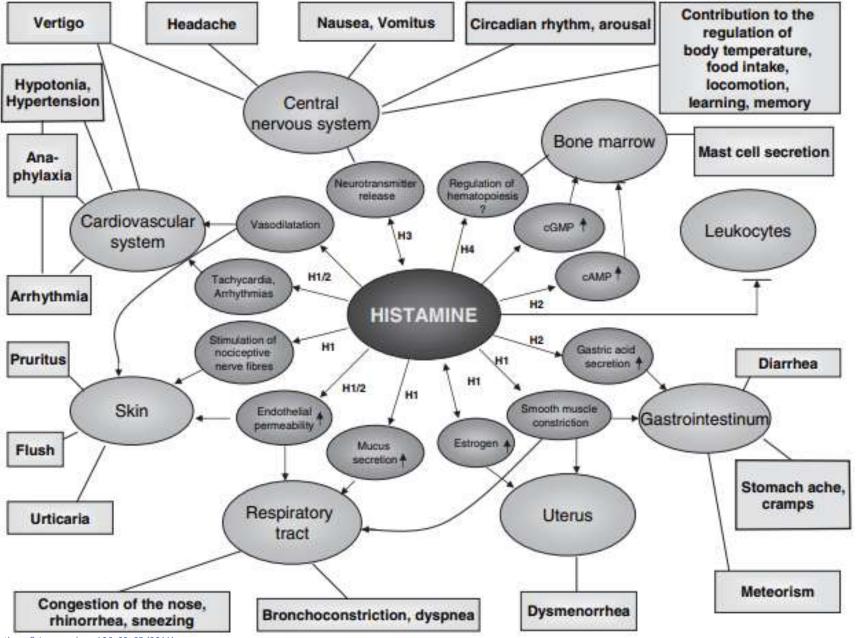
Microbiome

Entdeckung ¹


- In 1932 wurde entdeckt, dass es eine wichtige Rolle bei Allergien spielt,
- In den 1940er Jahren wurden die ersten Antihistaminika entwickelt

Histamin ist ein biogenes Amin¹

- Amin: Chemische Verbindung, die aus einer Aminosäure entsteht.
- Andere Amine: Dopamin, Noradrenalin, Tyramin.


Heute

- In der Natur allgegenwärtig²
- Viele Funktionen beim Menschen ^{2,3}: Es ist ein Mediator des **neuro**immun-endokrinen Systems

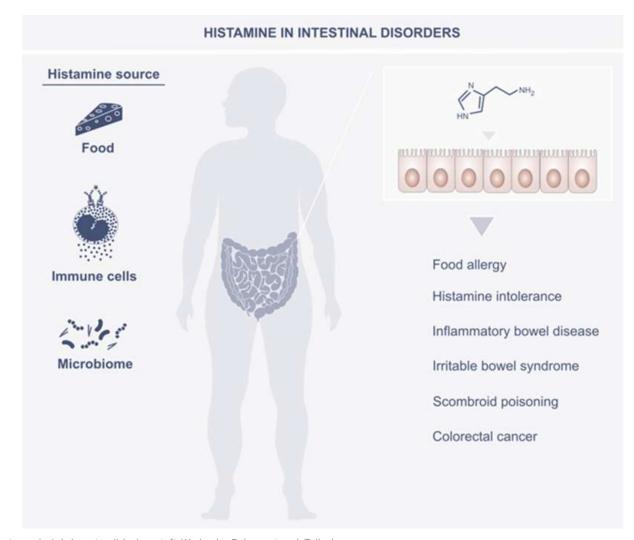
^{1.} Lieberman, P.Annals of Allergy, Asthma & Immunology.106,.S2-S5.(2011)

^{2.} Hrubisko, M. et al. Nutrients. 13,.2228. (2021)

^{1.} Lieberman, P.Annals of Allergy, Asthma & Immunology.106,.S2–S5.(284) nhalt dieses Dokuments ist Eigentum des Microbiome Center und wird als vertraulich eingestuft. Weder das Dokument noch Teile davon dürfen ohne ausdrückliche schriftliche Genehmigung des Microbiome Center veröffentlicht, reproduziert, kopiert, öffentlich zugänglich gemacht oder verbreitet werden. Dieser Inhalt stellt keinen medizinischen Rat dar und dient ausschließlich zu Informationszwecken. Der Inhalt ist ausschließlich für medizinisches Fachpersonal bestimmt..

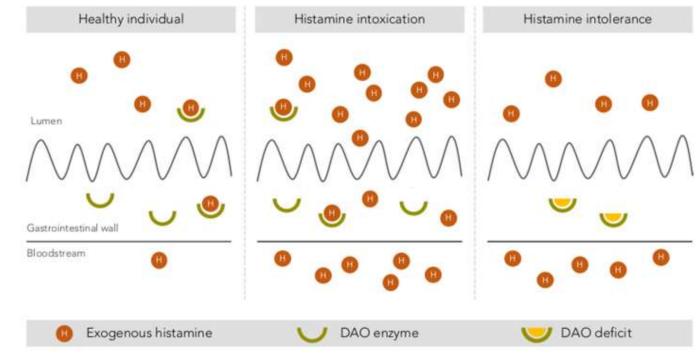
Microbiome

Biosynthese


Durch Decarboxylierung von Histidin (+ Vitamin B6) -> Histamin

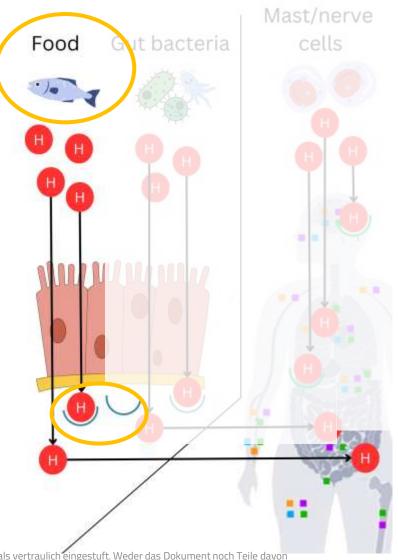
- Kurzer Syntheseweg bei Pflanzen und Tieren: Histamin ist schnell verfügbar
- Histidin ist in fast allen Lebensmitteln enthalten

Sources of histamine

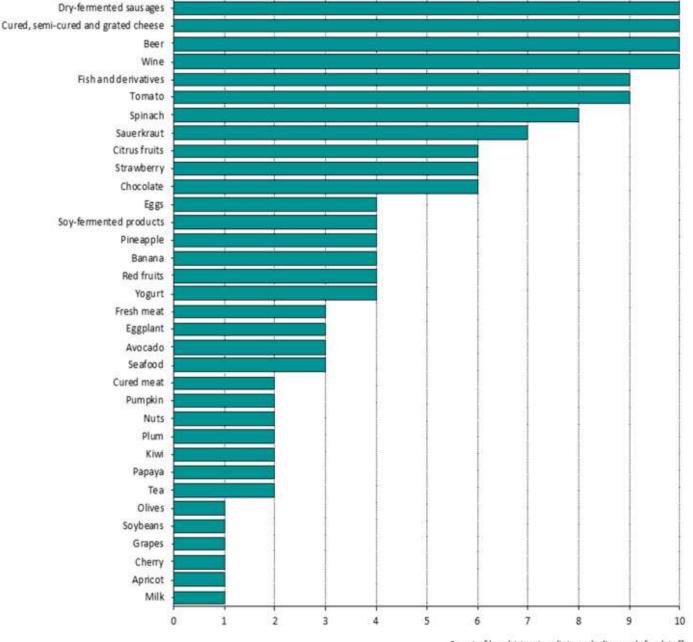

- 1) Essen
- 2) Darmbakterien
- 3) Endogene Produktion:
 - Mastzellen und andere Immunzellen setzen Histamin frei.
 - Bestimmte Nervenzell

Histaminintoleranz

- Ursprünglich wurde eine Erkrankung aufgrund eines Histamin- überschusses als **Histaminvergiftung bezeichnet**.
 - Verdorbene Lebensmittel, insbesondere Fisch
- Die zu Symptomen führenden Histaminbelastungen variieren erheblich: Die individuelle Reaktion spielt eine große Rolle, was die Definition zu Histaminintoleranz ändert.
 - Wichtige Rolle bei der Reaktion auf DAO
 - HI gilt auch als Störung aufgrund einer verminderten Histaminabbaukapazität oder eines Mangels an DAO

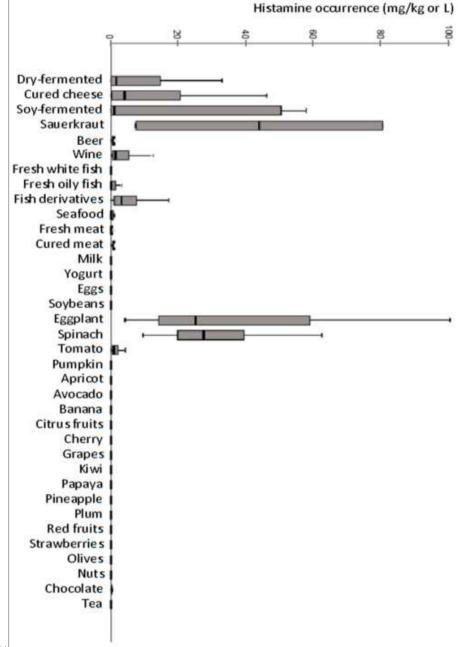

Histaminintoleranz

- Ursprünglich konzentrierte sich die Diagnose "Histaminintoleranz" daher auf¹:
 - Histamin in der Nahrung
 - Die Fähigkeit, mit der Histaminaufnahme in der Nahrung umzugehen


Die Behandlung einer Histaminintoleranz besteht typischerweise aus¹:

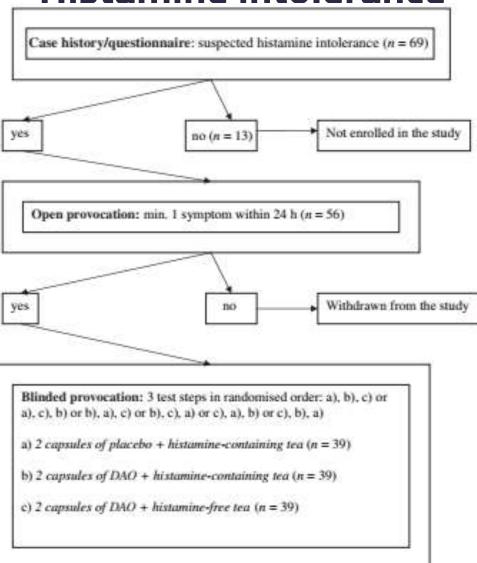
- Begrenzung der Histaminaufnahme über die Nahrung
- DAO-Supplementierung

Histamin

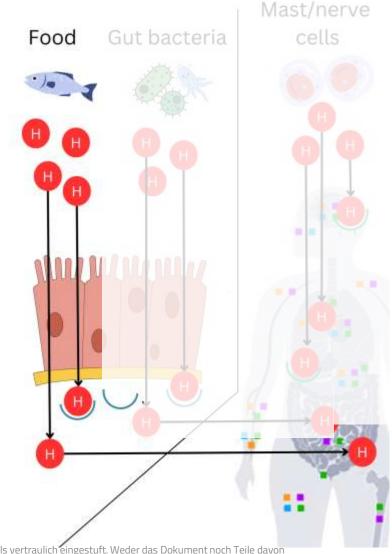

- Verschiedene histaminarme Diäten werden angewendet.
- Verschiedene histaminarme Diäten werden angewendet.
- Interessanterweise war die Überschneidung zwischen diesen 10 Diäten sehr gering, da nur 4 Nahrungsmittel in allen 10 Diäten vorkommen

Count of low-histamine diets excluding each foodstuff

Histamine diet


- Die Forscher analysierten außerdem den tatsächlichen Histamingehalt dieser in Spanien gekauften Lebensmittel¹.
- Die überwiegende Mehrheit der ausgeschlossenen Lebensmittel (68 %) wies **keinen** hohen Histamingehalt auf.
- Auch andere biogene Amine wurden in hohen Konzentrationen nachgewiesen:
 - Insbesondere Tyramin (trockenfermentierte Produkte, Käse, fermentiertes Soja).
 - Auch Putrescin und Cadaverin.
 - Konkurrieren möglicherweise um die verfügbare DAO.
- Hinweis: Einige Lebensmittel sollen die Freisetzung von endogenem Histamin auslösen, es gibt jedoch keine Hinweise darauf.

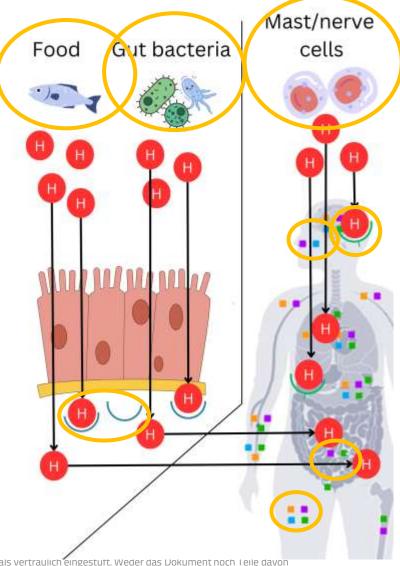
Histamine intolerance - lack of reproducibility


Table 2. Number (n) and percentage (%) of subjects	with at
least 1 positive reaction among blinded treatment g	roups

	n	n of positive reactions	% of positive reactions
DAO + histamine-containing tea	39	30	76.9
DAO + histamine-free tea	39	25	64.1
Placebo+ histamine-containing tea	39	30	76.9

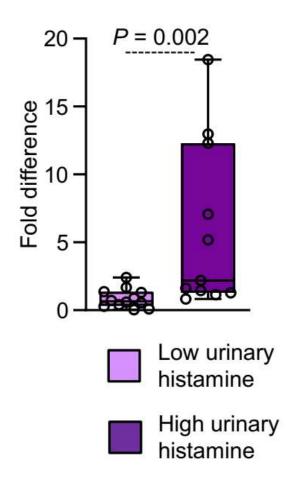
Der Begriff "Histaminintoleranz" ist ungenau

- Die Ernährung ist nicht die einzige Histaminquelle. Ein Mangel an DAO kann nicht alle Symptome erklären.
- Eine Unverträglichkeit gegenüber einer körpereigenen Substanz, die für das Überleben unerlässlich ist, wäre mit dem Leben unvereinbar.
 - Schon einmal von Adrenalin- oder Testosteronintoleranz gehört?
 - Fruktose-, Laktose- und Glutenintoleranz beziehen sich auf körperfremde Substanzen.
- Der klassische Begriff Histaminintoleranz ist eine Fehlbezeichnung und eine Vereinfachung

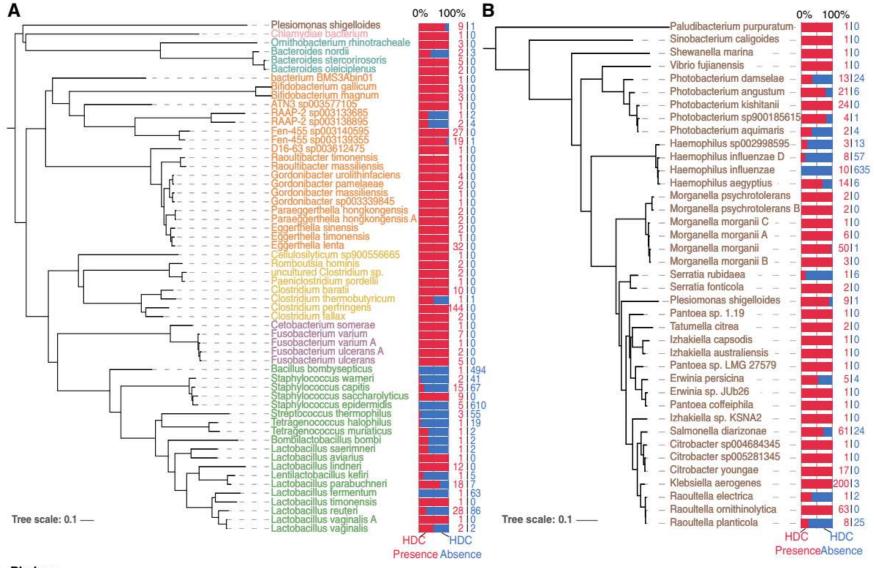


Faktoren, die eine Rolle spielen

Die Gesamtreaktion auf Histamin wird bestimmt durch:

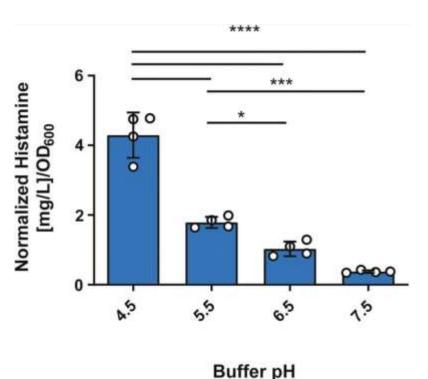

- Histaminexposition
 - Histaminbelastung durch die Nahrung
 - Bakterielle Histaminproduktion
 - Histaminfreisetzung durch Mastzellen
 - Histaminfreisetzung durch Nervenzellen
- Histaminwirkung:
 - Expression der vier Histaminrezeptortypen (mit unterschiedlichen Wirkungen)
 - Blockierung spezifischer Rezeptortypen
- Histaminabbau:
 - Freisetzung und Abbau durch DAO
 - Abbau durch HNMT

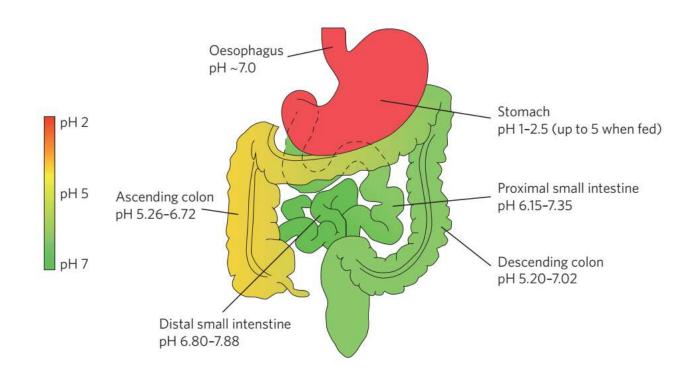
Typischerweise werden pathogene Bakterien betrachtet


- Histaminproduzierende Bakterien können Histidin in Histamin umwandeln, z. B.:
 - 1) Serratia spp.
 - 2) Morganella spp.
 - 3) Klebsiella spp.
 - 4) Citrobacter spp.
- Beispiel: Eine Studie ergab hohe Konzentrationen von Klebsiella aerogenes bei Patienten mit Reizdarmsyndrom.

Aber ... verschiedene Kommensalen können Histamin produzieren

Bei fast 100 von 32.000 Arten wurde das Histidin-Decarboxylase-Gen nachgewiesen




Auch wenn Bakterien Histamin produzieren können, heißt das nicht, dass sie es auch tun

Der pH-Wert ist ein wichtiger Faktor

- *L. reuteri 6475* kann Histamin produzieren, die Menge hängt jedoch stark vom pH-Wert der Umgebung ab¹.
- Die Umwandlung von Aminosäuren ist ein Schutzmechanismus für Bakterien in saurer Umgebung²

Der Inhalt dieses Dokuments ist Eigentum des Microbiome Center und wird als vertraulich eingestuft. Weder das Dokument noch Teile davon dürfen ohne ausdrückliche schriftliche Genehmigung des Microbiome Center veröffentlicht, reproduziert, kopiert, öffentlich zugänglich gemacht oder verbreitet werden. Dieser Inhalt stellt keinen medizinischen Rat dar und dient ausschließlich zu Informationszwecken. Der Inhalt ist ausschließlich für medizinisches Fachpersonal bestimmt.

Die Nährstoffverfügbarkeit hat große Auswirkungen 👔

TABLE 3. Influence of glucose concentration and growth rate on the production of organic acids and amines by C. perfringens grown in continuous culture

		Fermentation products ^b (mmol/g [dry wt] of cells)													
D (per h)	D Culture (per h) conditions ^a	Organic acids			Amines							% Amines produced			
2078 33		A	В	L	S	Total	Me	Di	Pr	Ру	Bu	Pu	Ca	Total	productu
0.04	Glucose limited Amino acid limited	29.7 44.6	6.7 10.7	1.1 31.9	2.4 4.6	39.9 91.8	0.5 0.5	0.6 0.5	1.5 1.8	0.4 0.4	0.5 0.1	0.8 0.7	1.1 0.4	5.4 4.4	12.1 4.6
0.08	Glucose limited Amino acid limited	25.1 17.1	2.3 2.4	0.8 57.6	ND T	28.2 77.7	1.0 0.8	0.5 0.4	1.3 1.5	ND 0.3	0.9 1.1	0.8 0.6	0.8 0.3	5.3 4.0	15.8 4.9
0.16	Glucose limited Amino acid limited	14.2 11.3	1.4 1.8	2.1 51.3	T ND	17.7 64.4	1.2 0.7	0.3 0.3	3.1 1.3	0.3 0.3	0.2 0.4	1.3 ND	1.3 0.8	7.7 3.8	30.3 5.6

^a Cultures were grown on a glucose-limited medium containing 5.0 g of peptone and glucose per liter and on an amino acid limited medium containing 5.0 g of peptone per liter and 15 g of glucose per liter.

^b A, Acetate; B, butyrate; L, lactate; S, succinate; Me, methylamine; Di, dimethylamine; Pr, propylamine; Py, pyrrolidine; Bu, butylamine; Pu, putrescine; Ca, cadaverine. ND, Not detected; T, trace (<0.1 mmol/g [dry weight] of cells)

Nützliche Arten (z. B. Lactos) hemmen biogene Amin-produzierende Krankheitserreger

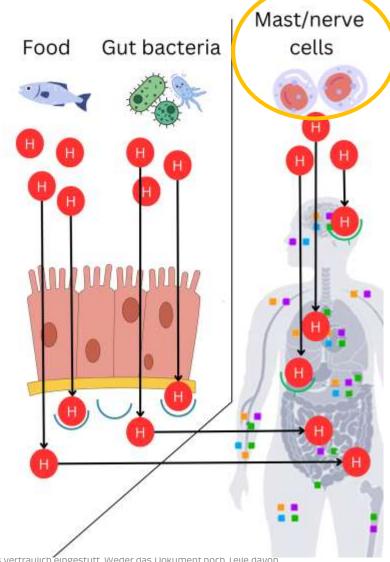
Table 4: Effect of lactic acid bacteria on the production of biogenic amines by foodborne pathogens

Hydrogen peroxide	Reuterin
Diacetyl LAB microbial compounds	Bacteriocins
Organic acids (lactic acid and acetic acid) Acetaldehyde	Ethanol

LAB	HIS	TYR	PUT	CAD	Unit	Pathogens	Broth/Food	References
Control	20.32	2167.25	638.68	48.37		E. coli	Tyrosine	
Pediococcus acidophilus	11.16 ¹	351.13 ^S	192.07 ¹	27.12 ¹	mg/L		decarboxylase broth	Toy et al., 2015
Control	177.4	502.8	563.3	644.1		pathogen	Fermented	77' . 1 2015
Lactobacillus plantarum	28.93 ^I	268.1 ^I	70.03 ^I	252.6 ^I	mg/kg		sausages	Xie et al., 2015
Control	0.00	0.82	35.33	185.87		S. Paratyphi A	Lysine	171
Lactobacillus plantarum	1.10 ^S	8.02 ^S	31.10 ^I	433.98 ^S	mg/L		decarboxylase broth	Kuley et al., 2012
Control	673.9	7.5	2	20		L. monocytogenes	Ornithine	Ö=====l =4 =1
Streptococcus thermophilus	37.8 ¹	93.9 ^S	2	2	mg/L		decarboxylase broth	Özogul et al., 2015
Control	0.90	1,-2	-) - ()	/100		Tuna (Euthinus	Thiruneelakand
Lactobacillus plantarum	0.60^{I}	12	*	-	mg/100g	pathogen	affinis)	an et al., 2013
Control	0.57	2.52	10.05	0.78		S. aureus	Histidine	
Lactococcus lactis	5.79 ^S	41.13 ^S	61.95 ^S	7.60 ^S	mg/L		decarboxylase broth	Özogul, 2011
Control	(34)	1.00	207.3	228.2	1	F. C	Traditional Chinese	V:+ -1 2016
Lactobacillus plantarum	(54)		147.9 ^I	197.9 ^I	mg/ml	E. faecium	sausage	Xie et al., 2016
Control	(=4)	1 m	138.59	235.95				Limsuwan et al.,
Lactobacillus sakei	-	90	82.23 ^I	224.74 ^I	mg/kg	pathogen	Fermented pork sausage	2007
Control	1.00	18.6	11.6	7.59			Spanish Type	
Leuconostoc mesenteroides	2.14 ^S	26.4 ^S	32.1 ^S	19.1 ^S	mg/kg	pathogen	Culture Collection (CECT, Valencia, Spain)	Peñas et al., 2010

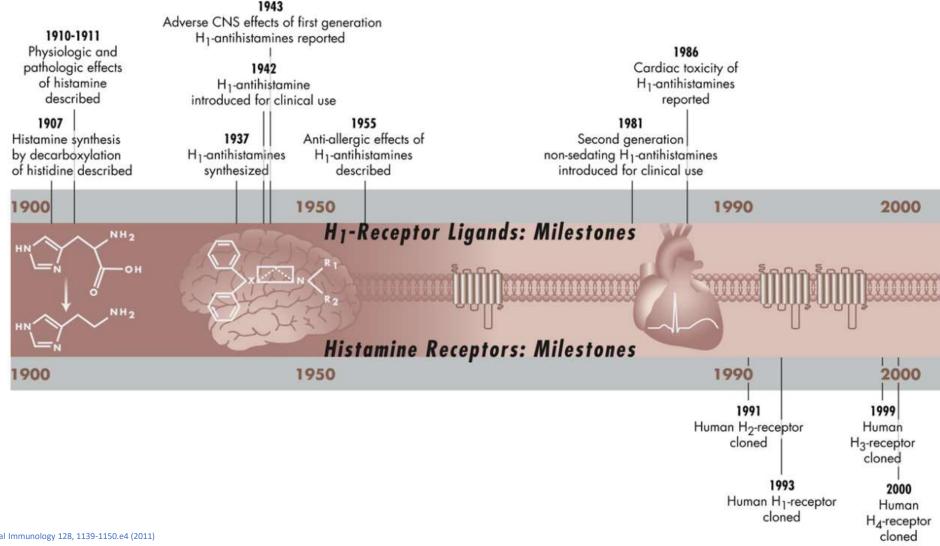
S: stimulation effect of LAB on pathogenic bacteria

^I: Inhibition effect of LAB on pathogenic bacteria

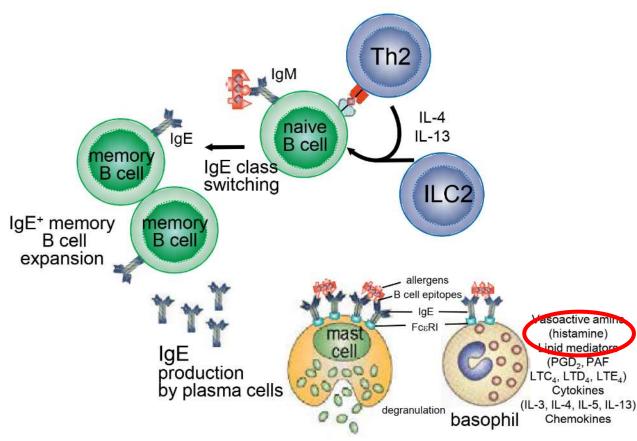

Fragen

Faktoren, die eine Rolle spielen

Die Gesamtreaktion auf Histamin wird bestimmt durch:


- Histaminexposition
 - Histaminbelastung durch die Nahrung
 - Bakterielle Histaminproduktion
 - Histaminfreisetzung durch Mastzellen
 - Histaminfreisetzung durch Nervenzellen
- Histaminwirkung:
 - Expression der vier Histaminrezeptortypen (mit unterschiedlichen Wirkungen)
 - Blockierung spezifischer Rezeptortypen
- Histaminabbau:
 - Freisetzung und Abbau durch DAO
 - Abbau durch HNMT

Microbiome

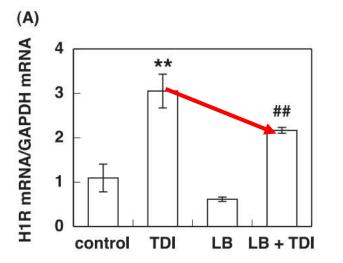

Die lange Geschichte der Anwendung von Antihistaminika bei allergischen Erkrankunge

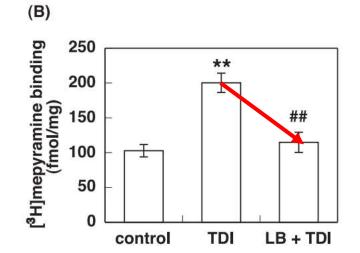
Rolle von Histamin bei allergischen Reaktionen

type 1 hypersensitivity

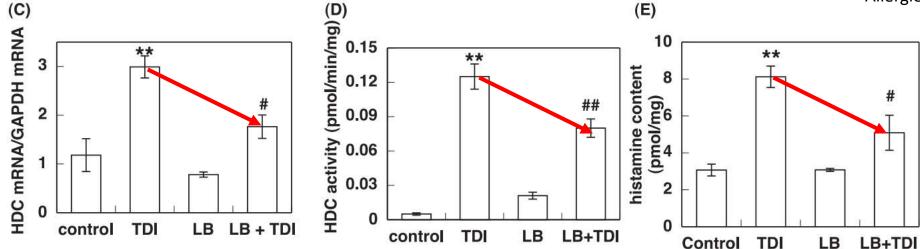
- Die immunologischen Grundlagen allergischer Erkrankungen verlaufen in zwei Phasen¹:
 - **Sensibilisierungsphase:** Sensibilisierung und Entwicklung von Gedächtnis-T- und B-Zell-Reaktionen sowie IgE-Produktion.
 - Effektorphase: Die erneute Begegnung mit dem Allergen führt zur Vernetzung von IgE-FceRl-Komplexen auf sensibilisierten Basophilen und Mastzellen. Dadurch werden anaphylaktogene Mediatoren aktiviert und freigesetzt, die für die sofortige Überempfindlichkeitsreaktion verantwortlich sind.

Probiotika helfen bei Allergien

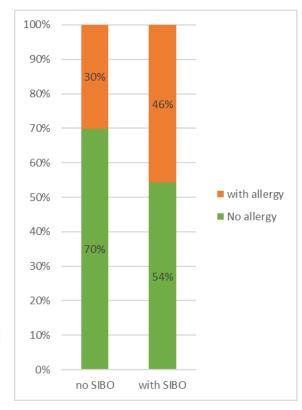



Meta-analyses show benefits of probiotics in:

- Prevention and treatment of atopic dermatitis in children¹
- Treatment of atopic dermatitis in adults on short and long term²
- Treatment of cow-milk allergy in children³
- Prevention of atopy and food hypersensitivity in children⁴
- Etc.


Spezifische Probiotika senken die Histaminproduktion

TDI: Toluol-2,4-diisocyanat (zur Sensibilisierung und Allergieauslösung)



Der Innait dieses Dokuments ist Eigentum des Microbiome Lenter und wird als Vertraulich eingesturt, weder das Dokument noch Teile davon dürfen ohne ausdrückliche schriftliche Genehmigung des Microbiome Center veröffentlicht, reproduziert, kopiert, öffentlich zugänglich gemacht oder verbreitet werden. Dieser Inhalt stellt keinen medizinischen Rat dar und dient ausschließlich zu Informationszwecken. Der Inhalt ist ausschließlich für medizinisches Fachpersonal bestimmt.

Zusammenhang zwischen Allergien und SIBO

- Small intestinal bacterial overgrowth (SIBO) has a direct effect on the microbial interaction with the immune system.
- Microbiome Center suspects mechanistic link between SIBO and allergies:
 - Both SIBO and allergies show low levels immunogenic bacteria in fecal analyses.
 - Patients with SIBO more often have allergies.
 - Indeed, a small study found a high level of comorbidity¹.
- One cause of SIBO is failure of the forward barrier: the acidic stomach.
 - Less acidic stomach environment prevents adequate denaturing of folded proteins, associated with increased risk of food allergies^{2,3}.
 - PPI use in children is associated with increased prevalence of asthma^{4,5} or food allergies⁵.

Table 2. Frequency of allergies in subjects with and without SIBO and the odds ratio of allergic disease in patients with CAP for SIBO

Allergy			SIBO		
	Negative n = 35	Positive n = 35	OR	95% IC	p-value
Any allergy	10 (28.6%)	25 (71.4%)	5.45	1.96-15.17	0.001
CMPA	0	9 (25.7%)	1.34	1.10-1.63	0.001
Food allergy	2 (5.7%)	7 (20%)	1.12	0.79-21.48	0.07
Rhinitis	8 (22%)	18 (51.4%)	3.57	1.27-10.01	0.01
Asthma	0	5 (14.3%)	1.16	1.01-1.36	0.02
Urticaria	1 (2.9%)	1 (2.9%)	1	0.06-16.64	0.75
Atopic dermatitis	3 (8.6%)	7 (20%)	2.66	0.62-11.30	0.15

SIBO: small intestinal bacterial overgrowth; CAP: chronic abdominal pain; CMPA: cow's milk protein allergy. Chi-squared test was performed.

^{1.} Peña-Vélez, R. et al. Rev Esp Enferm Dig 111, 927–930 (2019)

^{2.} T. G. Guilliams, L. E. Drake, Integr Med (Encinitas). 19, 32–36 (2020).

^{3.} Untersmayr, E. et al. J Allergy Clin Immunol 121, 1301–1308; quiz 1309–1310 (2008)

^{4.} Wang, Y.-H. et al. JAMA Pediatr 175, 394-403 (2021)

^{5.} Mitre, E. et al. JAMA Pediatr 172, e180315 (2018)

Zusammenhang zwischen Allergien und SIBO

- Die Rückwärtsbarriere kann aufgrund von Verstopfung versagen, was zu SIBO führt¹.
- Interessanterweise werden Nahrungsmittelallergien, wie z. B. eine Kuhmilchallergie, mit Verstopfung in Verbindung gebracht ^{2, 3}.
- Huhn oder Ei:
 - 1. Führt eine Allergie zu Verstopfung?
 - 2. Führt Verstopfung zu (SIBO führt zu) einer Allergie?
- Option 2 ist wahrscheinlicher:
 - Auch nicht-gastrointestinale Allergien wie Neurodermitis⁴, Asthma⁵ und allergische Rhinitis⁶ werden mit Verstopfung in Verbindung gebracht.

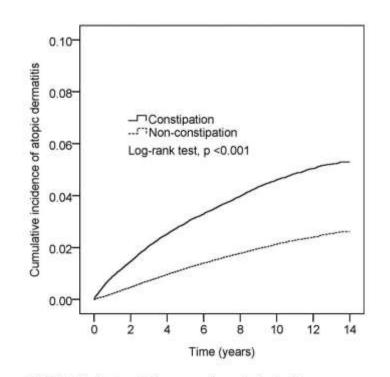


FIGURE 2 Kaplan-Meier curve of cumulative incidence proportion of atopic demattits in constipation group and nonconstipation group

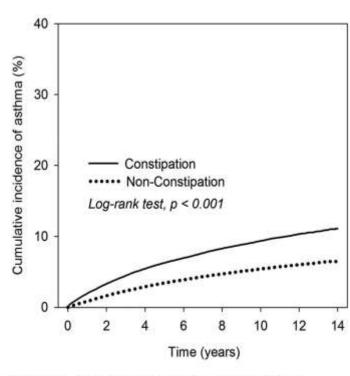


FIGURE 2 Kaplan-Meier curve of cumulative incidence proportion of asthma in constipation and non-constipation groups

^{1.} F. R. Ponziani, V. Gerardi, A. Gasbarrini, Expert Review of Gastroenterology & Hepatology. 10, 215–227 (2016).

^{2.} Connor, F. et al. Nutrients 14, 1317 (2022)

^{3.} Miceli Sopo, S. et al. Int Arch Allergy Immunol 164, 40–45 (2014)

Huang, Y.-C. et al. Int J Clin Pract 75, e13691 (2021)

^{5.} Huang, Y.-C. et al. Int J Clin Pract 75, e14540 (2021)

Zusammenhang zwischen Allergien und SIBO

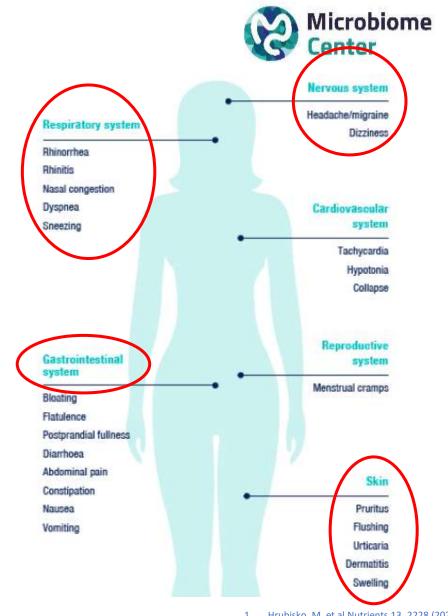
Study or Subgroup	Mean prevalence	SE	Weight	Mean prevalence IV, Random, 95%CI		Mean prevalence , Random, 95% C	l	
Abdulkarim 2002	0.1428	0.09796	10.1%	0.14 [-0.05, 0.33]				
Chang 2011	0.48	0.1385	7.3%	0.48 [0.21, 0.75]		**	-	
Dewar 2012	0.09	0.0561	13.5%	0.09 [-0.02, 0.20]		-		
Ghoshal 2004	0.08333	0.1563	6.4%	0.08 [-0,22, 0.39]				
Lasa 2015	0.2	0.20242	4.5%	0.20 [-0.20, 0.60]		-		
Mooney 2014	0.2157	0.11288	9.0%	0.22 [-0.01, 0.44]		-		
Prizont 1970	0.5	0.4	1.5%	0.50 [-0.28, 1.28]				\rightarrow
Rana 2007	0.2069	0.08512	11.1%	0.21 [0.04, 0.37]				
Rana 2008	0.05	0.04775	14.2%	0.05 [-0.04, 0.14]				
Rubio Tapia 2009	0.09395	0.04685	14.2%	0.09 [0.00, 0.19]				
Tursi 2003	0.6666	0.1217	8.4%	0.67 [0.43, 0.91]			-	_
Total (95% CI)			100.0%	0.20 [0.10, 0.30]		•		
Heterogeneity: Tau ² =	0.02; Chi ² = 32.14, 0	df = 10 (P =	= 0.0004)	; I ² = 69%			-1	-
Test for overall effect			62000 C.C.C.C.C.	*** #550566	-1 -0.5	0	0.5	1

- 1. Bei Patienten mit Allergien ist auf SIBO zu achten und umgekehrt.
- 2. Das MC-Wissensnetzwerk hilft, schnell neue Erkenntnisse zu gewinnen.

- Von Ärzten des Microbiome Center netwerks erfahren wir häufig von Komorbiditäten zwischen Nahrungsmittelunverträglichk eiten/-allergien und SIBO.
- Tatsächlich wurden Assoziationen festgestellt:
 - Laktoseintoleranz¹.
 - Zöliakie^{2,3} (Abbildung).
- Es gibt Hinweise darauf, dass Zöliakiepatienten, die nicht auf eine glutenfreie Ernährung ansprechen, häufiger an SIBO⁴ leiden.

^{1.} Zhao, J. et al. Aliment Pharmacol Ther 31, 892–900 (2010)

^{2.} Losurdo, G. et al. Neurogastroenterol Motil 29, (2017)


^{3.} Shah, A. et al. Journal of Gastroenterology and Hepatology n/a,

^{4.} Safi, M.-A. A. et al. Turk J Gastroenterol 31, 767–774 (2020)

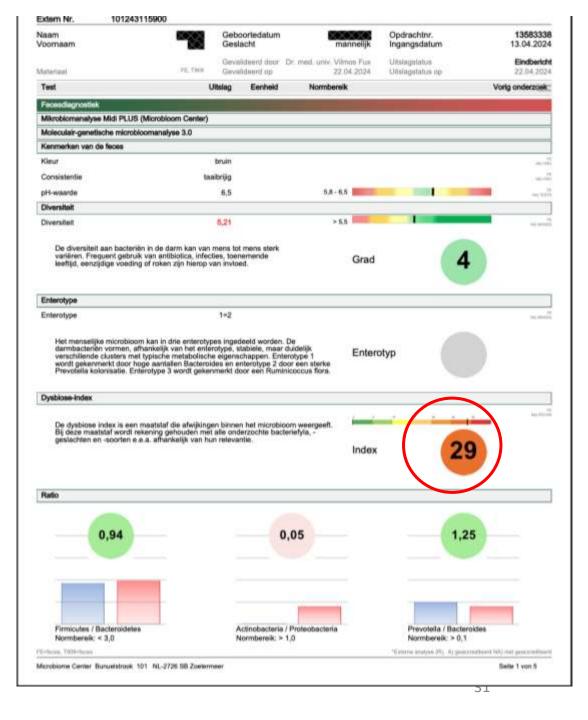
Patient: 39-jähriger Mann

Symptome:

- Chronische Bauchschmerzen seit der Kindheit.
- Ständig geschwollene Nasenschleimhaut, was zu eingeschränkter Atemfunktion führt
- Obstruktive Schlafapnoe (OSAS)
- Chronische Müdigkeit und verminderte Vitalität
- Übergewicht (BMI 31)
- Erhöhte Muskelspannung, insbesondere im Nackenbereich (führt zu Kopfschmerzen)
- Gelegentlicher Juckreiz im Rücken
- Mäßige psychische Probleme, Konzentrationsschwierigkeiten, Überreizbarkeit



1. . Hrubisko, M. et al. Nutrients. 13,. 2228. (2021)


Atemtestergebnisse:

Wasserstoff-SIBO

Ergebnisse des Mikrobioms:

- Leaky-Gut-Syndrom
- Schlechte Fettverdauung
- Erhöhte Entzündungsmarker
- Nicht messbarer Histaminspiegel
- Erhöhte Antigliadin-Antikörper

Der Inhalt dieses Dokuments ist Eigentum des Microbiome Center und wird als vertraulich eingestuft. Weder das Dokument noch Teile davon dürfen ohne ausdrückliche schriftliche Genehmigung des Microbiome Center veröffentlicht, reproduziert, kopiert, öffentlich zugänglich gemacht oder verbreitet werden. Dieser Inhalt stellt keinen medizinischen Rat dar und dient ausschließlich zu Informationszwecken. Der Inhalt ist ausschließlich für medizinisches Fachpersonal bestimmt.

laam	EMPERIOR CO.	slacht	mannetijk	Opdrachtnr. Ingangsdatum	1358333 13.04.202
Test	Uitslag	Eenheld	Nomberelk	- gangadatan	Vorig onderzoek
Indeling van bacteriën naar fylum					
Actinobacteria	0,2	- %	1.5 - 7		7 (2.79)
Bacteroidetes			20 - 45		9190
\$100 HAMP **	49,4				10.00
Firmicules	48,4	*	50 - 75		100
Fusobacteria	0,0	%	0,0 - 1,0		10.00
Proteobacteria	4,0	%	1,0 - 3,5		100
Verrucomicrobia	0,0	%	5,5 - 5,0		-
Overige	0,0	N .			al les
Metaboloom (stofwisselingsactieve b	oacterlegroepen)				
Securidaire gatzuren	21,9	. 14			3
TMA / TMAO	-41,5	%			
Indoxylsulfaet	-50,0	967			
Fenolen	-45.5				
Ammoniak	66.2			Plantage Market	
		*		Name and Address of the Owner, where	
Histamine	-50,0			_	
Equal	-48,0	156	-		
Beta-glucuronidasen	-49,4	*			
Indeling van bacteriën naar fylum m	et de belangrijkste bac	eriegeslachten er	-soorten		
Actinobacteria					
Bifidobacterium	1,4 x 10^9	KVEIg Noes	> 1,0 x 10*10		
Bacteroideles					
Bacteroides	2,0 x 10^11	KVE/g feces	> 5.0 x10*10		10,000
Prevotella	2.5 x 10^11	KVE/g Noes	> 1,0 x 10*10		
Prevoteta copr	1 24	. %			20.00
Firmicutes				_	
Butyraatproducerende bacterlên					
Totaal kiemgetal	1,8 x 10^11	KVE/g Noes	>2,4 x 10*11	- 1	2010
Faecalibecterium prausnitzii	7,8 x 10^10	KVE/g feces	>1.0 x10*11	1	
Eubacterium rectale	1,6 x 10*10	KVE/g feces	> 2,0 x 10^10		-
Eubacterium hallii		KVEIg feces	> 1,5 x 10^10 I	1.00	100
					10,000
Roseburia spp.	4,6 * 10*10		> 3.0 x10*10		
Ruminococcus app.		KVE/g feces	> 5,0 x 10^10	100	40.00
Coprococcus spp.	9,5 x 10 ⁹	KVE/g feces	> 5,0 x 10*10		-
Butyrivibrio spp.	4,9 x 1016	KVE/g feces	>1,5 x 10^10		- Allen
Clostridia					
Totaal kiemgetal	3,3 x 10^8	KVE/g feces	< 4,0 x 10*9		1000
Clostridia Cluster I	1,0 x 1015	KVE/g feces	< 2,0 x 10*9		
Fuschecteria					1, 101
Fusobacterium	1,9 x 10 ⁴ 7	KVE/g Nove	< 1,0 x 10*7	THE REAL PROPERTY.	40.00
Verrucomicrobia	100-100-100	1995, 1997, 6	- Alternation		
Akkermansia muciniphila	1,0 x 10°7	KVE/g feces	> 5,0 x 10*9	100	200
Proteobacteria					
Pathogene of potentieel pathogene t	bacterlön				
Haemophilus app.	1.9 x 10^7	KVE/g feces	< 5.0 x 10*8		-

laam	100000000	slacht	mannelijk	Opdrachtnr. Ingengsdatum	1358333 13.04.202
Test	Ultslag	Eenheid	Nombereik	igerigsullium	Vorig onderzösk
Acinetobacter spp.	< 1.0 x 10*5		< 1.0 x 10%	1989	
Proteus app.	< 1.0 x 10*5		< 1.0 x 10^6	1989	
Klebsiella spp.		KVE/g feces	< 1.0 x 10*7		
Enterobacter spo	< 1,0 x 10^5		< 1.0 x 10*6	1988	
Serratia spp.	< 1,0 x 10 5		= 1.0 × 10*7	104400	
Hafria spp.	< 1.0 x 10 °5		< 1.0 x 10*6	1000	- Ac 415
Morganella spp.	< 1.0 x 10 5		< 1.0 x 10*6	1986	10.00
		KVE/g feces	< 5.0 x 10*8	STORY.	
Citrobacter spp.				10000	
Pseudomonas spp.	< 1,0 x 10*5		< 5.0 x 10*7	10.00	-
Providencia spp.	< 1,0 x 10*5	KVE/g Seces	< 5.0 × 10 ⁴ 7	1000	
H2S-vorming		Marin Control	- 2 C - 1000		
Suffeatreducerende bacteriën (SRB)		KVE/g fecen	< 2.5 x 10*9	100	
Desulfovibrio piger	< 1.0 x 10^5	177	< 1.0 x 10*9	3167	-
Desulfomonas pigra	< 1,0 x 10*5		< 1.0 x 10*9	100	
Blophila wadsworthii	< 1,0 x 10*5	RVE/g foces	< 2.0 x 10*9	1000	
Immunogeniciteit / mucine vorming					
Immunogeen werkende bacteriën		and the same of			
Escherichia coli		KVE/g faces	10^6 - 10^7	-	
Enterococcus spp.	1,43 x 10^6		10^6 - 10^7		
Lactobacillus spp.	4,8 = 10^4	KVE/g feces	10*5 - 10*7		
Mucine vorming / skimvlesbarrière	4.0	In the second			
Akkermansia muciniphila		KVE/g feces	> 5.0 x 10^9		100.000
Faecalibecterium prausnitzii	7.6 x 10*10	KVE/g feces	>1,0 ×10*11		-1 24
Archaea					
Methanogenen	< 1,0 x 10*5	MATIN bean	< 5.0 x 10*8	7010	
Methanobrevibacter spp.	1,04,10,0			e OmicSnap-buisje en de daari effectievere monsteranalyse m e bacteriën. erschulvingen in de normberei	n aanwezige ogelijk, ken.
Mycobioom: relevante gisten					
Candida albicana (CA)	<1,0 x 10*3	KVE/g feces	<1.0 x 10*3	318	
Candida krusei (CK)	<1,0 x 10*3	KVE/g leces	< 1,0 x 10⁴9	田 田	- 50
Candida glabrata (CG)	<1.0 x 10*3	KVE/g feces	< 1,0 x 10*3	18366	
Candida dubliniensis (CD)	<1,0 x 10*3	KVE/g faces	< 1.0 x 10*3	2010	-
Candida parapsilosis (CP)	<1,0 x 10*3	KVErg faces	< 1.0 x 10*3	10000	
	<1,0 x 10*3	KVIDg feces	< 1.0 x 10°3	8940	-
Candida tropicalis (CTp)				10.00	
Candida tropicalis (CTp) Candida tustaniae (CL)	<1,0 x 10*3	KVE/g faces	< 1.0 x 10*3	(7) (8)	
	<1,0 x 10*3	KVE/g faces	< 1.0 x 10*3	V) • N	-00
Candida lustaniae (CL) Parasisten	<1,0 x 10*3	KVErg faces	< 1.0 x 10*3	31 9 5	
Candida lusitariae (CL) Parasieten Pathobioriten	<1,0 x 10*3	KVE/g faces	< 1.0 x 10 ⁴ 3		
Candida lustrariae (CL)		KVE/g faces			
Candida lusitariae (CL) Parasieten Pathobionten Blastocystis hominis	negatief	KVE/g faces	negatief	HI.	-
Candida lustrariae (CL) Parasieten Pathoblonten Biastocystis hominis Otentamoeba tragilia	negatief	KVE/g faces	negatief	HI.	

Naam	$\times\!\!\times\!\!\times\!\!\times\!\!\times\!\!\times\!\!\times$	$\times\!\!\times\!\!\times\!\!\times$	$\times\!\!\times\!\!\times\!\!\times$	Opdrachtnr.	13583338
*************************************	Gesla	acht	mannelijk	Ingangsdatum	13.04.2024
Test	Uitslag	Eenheid	Normbereik		Vorig onderzoek
Cryptosporidium spp.	negatief		negatief		A) MOLE
Cyclospora cayetanensis	negatief		negatief		A) MOLE
Vertering					7,9 4110000
Vetgehalte	5,60	g/100g	< 3,5		PHO NA) PHO
Stikstofgehalte	0,90	g/100g	< 1,0		F NA) PHO
Suikergehalte	3,00	g/100g	< 2,5		F NA) PHO
Watergehalte	72,80	g/100g	75 - 85		F NA) PHO
Extra parameter(s)	THE STATE OF	=3HOLT 55Mg			NA) PHC
Calprotectine	27,70	mg/l	< 50		F A) ELE
Alfa-1-antitripsine	85,6	mg/dl	< 27,5		F A) ELS
Secretoir Immunoglobuline A	>7500,0	µg/ml	510 - 2040		
Zonuline	80,75	ng/ml	< 55		A) ELIS
Histamine in feces	>24000,0	ng/ml	< 959		A) ELIS
Speciale gastro-enterologische diagnostiek	1,000,000,00).F)			A) ELIS
Gluten-sensitieve enteropathie / coeliakie					
Anti-gliadine antilichamen in feces	146,13	U/I	< 100		A) ELS
Anti-transglutaminase antistoffen in feces	<50,00	U/I	< 100		FA) ELS

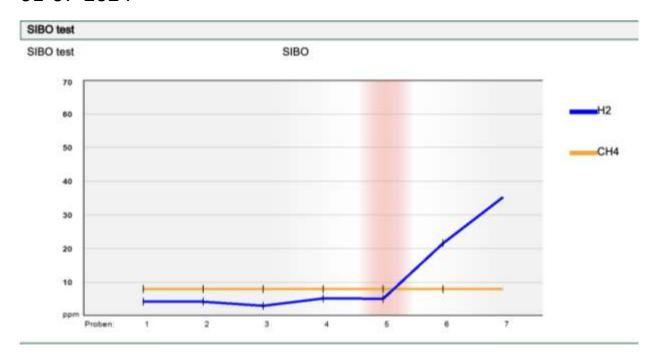
Behandlung:

Ernährungsanpassungen:

- Gluten- und Zuckerverzicht, erhöhte Proteinzufuhr
- 2-wöchige Elementardiät, gefolgt von:

Interventionen:

- MyOwnBlend
- Metadigest Lipid (Enzyme)
- 2-Prepare, Borretschöl und A-Mulsion (zur Darmheilung)


Element	Dagdosering	Bedrag	Type	Link
MyOwnBlend, magi strale bereiding 2 m aanden (oraal)		€ 275,0 0	Persoanlijke Berei ding	
PHGG	4		Magistral compound	
Bacillus clausii UB BC-07	1		Magistral compound	
2'-Fucosyllactose	3		Magistral compound	
Enterococcus faeci um + Bacillus subtil is	2		Magistral compound	
Lactiplantibacillus plantarum DR7	1		Magistral compound	
Akkermansia mucin iphila, gepasteurise erd	2		Magistral compound	
S. Boulardii	2		Magistral compou	

Ergebnisse:

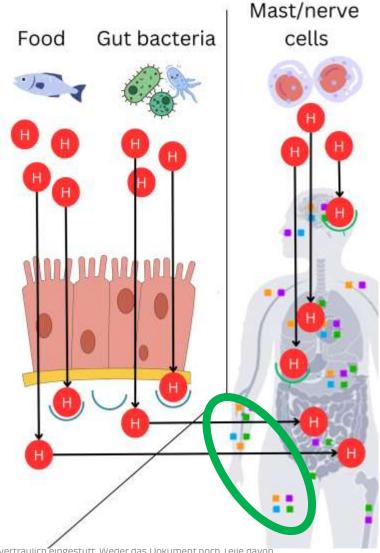
- Hydrogen-SIBO behoben
- Histaminspiegel vollständig normalisiert
- Die meisten Symptome (Nasenschleimhautprobleme, Müdigkeit, Kopfschmerzen und Bauchschmerzen) verschwanden weitgehend
- Über 10 kg Gewichtsverlust

01-07-2024

01-07-2024

Test	Uitslag	Eenheid	Normbereik	Vorig onde	rzoek
Fecesdiagnostiek					
Extra parameter(s)					
Histamine in feces	<200,0	ng/ml	< 959	>24000,0	A) ELISA

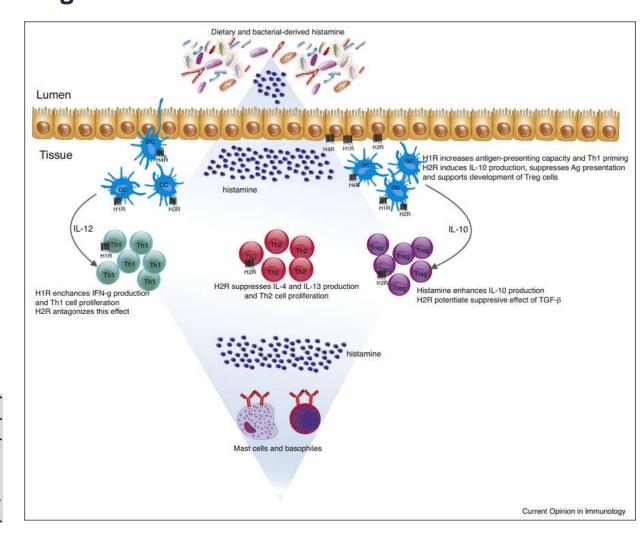
Fragen



Faktoren, die eine Rolle spielen

Die Gesamtreaktion auf Histamin wird bestimmt durch:

- Histaminexposition
 - Histaminbelastung durch Nahrung
 - Bakterielle Histaminproduktion
 - Histaminfreisetzung durch Mastzellen
 - Histaminfreisetzung durch Nervenzellen
- Histaminwirkung:
 - Expression der vier Histaminrezeptortypen (mit unterschiedlichen Wirkungen)
 - Blockierung spezifischer Rezeptortypen
- Histaminabbau:
 - Freisetzung und Abbau durch DAO
 - Abbau durch HNMT



Histamin ist nicht nur entzündungsfördernd. Die Effekte werden durch die Rezeptorexpression reguliert.

- H1R: Klassische sofortige Überempfindlichkeitsreaktionen:
 - Kontraktion glatter Muskelzellen
 - Erhöhte Permeabilität vaskulärer Endothelzellen
 - Synthese des Plättchenaktivierenden Faktors
 - Freisetzung von Von-Willebrand-Faktor und Stickstoffmonoxid.
- H2R: Antagonisiert H1R-Effekte:
 - Entspannung glatter Muskelzellen
 - Entzündungshemmend

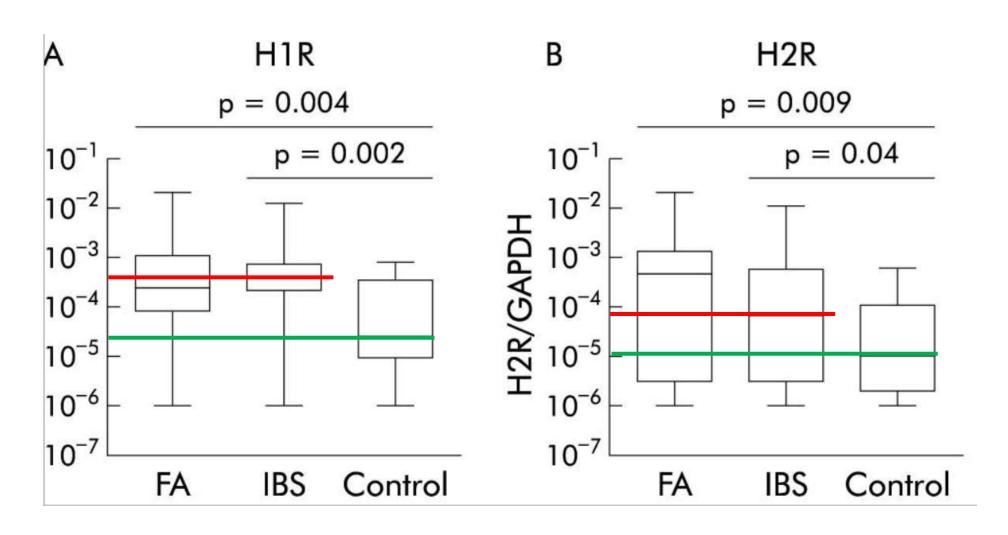
	H1R	H2R	H3R	H4R
Chromosomal location	3q25	5q35.2	20q13.33	18q11.2
G protein coupling	Gαq	Gαs	Gαi/0	Gαi/0
Intracellular signal transduction	Activates PLC, PKC and calcium release	Increases cAMP and activates PKA	Inhibits cAMP, activates MAPK, PKB and calcium release	Inhibits cAMP, activates MAPK, PKB and calcium release
Tissue location	Ubiquitous	Ubiquitous	Neurons	Bone marrow, hematopoietic cells keratinocytes

Histamin ist nicht nur entzündungsfördernd.

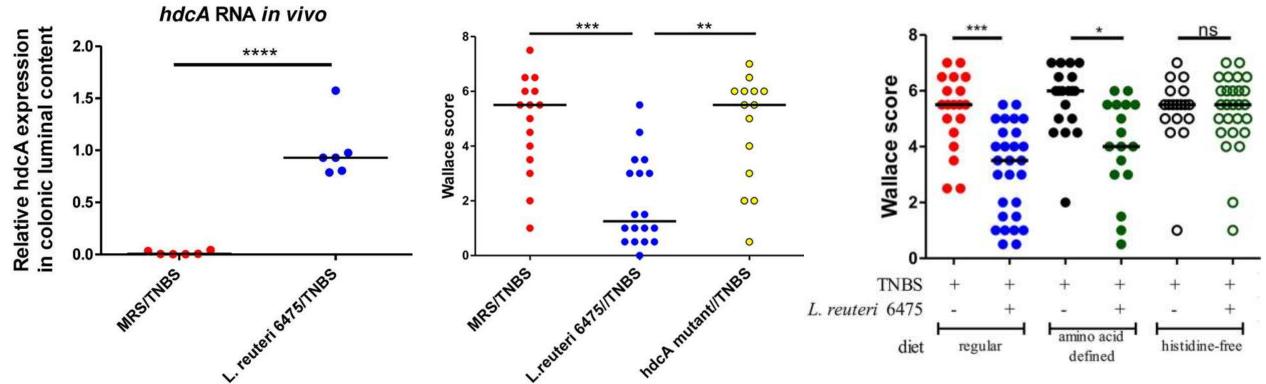
Die Effekte werden durch die Rezeptorexpression reguliert.

- vasodilation. vascular permeability, bronchoconstriction, contraction of the ileum, regulation of the circadian cycle, inflammation, production of IFN, H1-Receptor H2-Receptor proliferation of type 1 T-helpers, development of allergic reactions
 - external secretion (hydrochloric acid), tachycardia,
 - relaxation of smooth muscle cells,
 - anti-inflammatory effects, suppression of the production of cytokines,
 - suppression proliferation of T-helper 1 and type 2

- Inflammation.
- hypersensitivity reactions,
- pathogenesis of peptic ulcers and carcinogenesis.
- enhances the effect of acetylcholine on intestinal peristalsis



- reduces the production and release of acetylcholine, serotonin, and norepinephrine,
- sleep disorders,
- attention deficit hyperactivity disorder,
- epilepsy, and cognitive impairment


Erhöhte H1R- und H2R-Expression bei IBS-Patienten

Probiotisches Histamin kann Entzündungen lindern

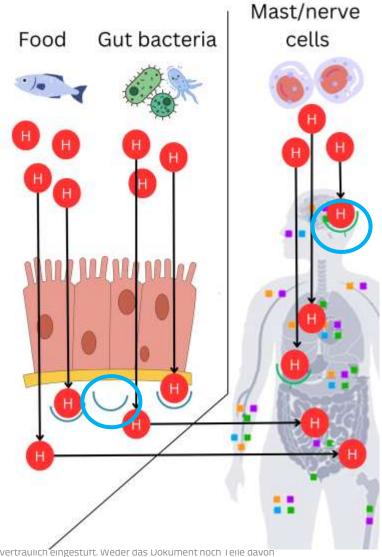
- Mausmodell der Colitis
- L. reuteri 6475 induziert die Expression der Histidin-Decarboxylase
- L. reuteri 6475 verringert die Entzündung (Wallace-Score), Mutanten hingegen nicht.
- Histidin muss in der Nahrung vorhanden sein, um die Wirkung zu erzielen.
- Wirkung durch Bindung an H2R.
- Außerdem beteiligt: Verbindungen, die den H1R-Signalweg unterdrücken

Fragen

Faktoren, die eine Rolle spielen

Die Gesamtreaktion auf Histamin wird bestimmt durch:

Histaminexposition

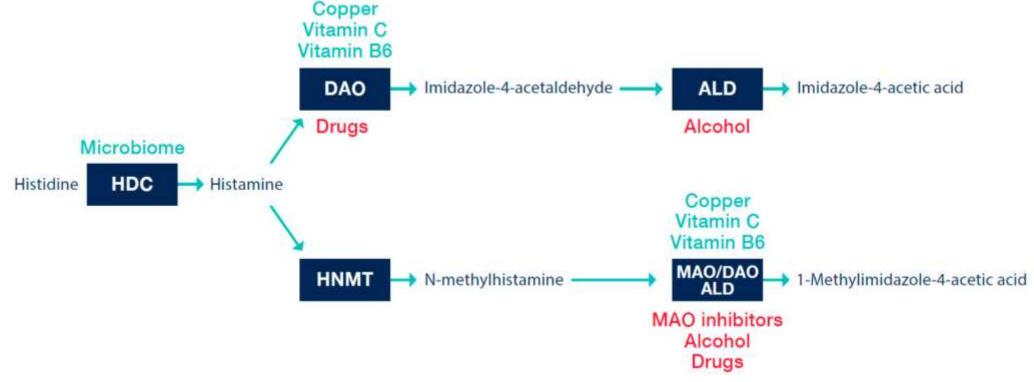

- Histaminbelastung durch die Nahrung
- Bakterielle Histaminproduktion
- Histaminfreisetzung durch Mastzellen
- Histaminfreisetzung durch Nervenzellen

Histaminwirkung:

- Expression der vier Histaminrezeptortypen (mit unterschiedlichen Wirkungen)
- Blockierung spezifischer Rezeptortypen

Histaminabbau:

- Freisetzung und Abbau durch DAO
- Abbau durch HNMT



Histaminabbau

Zwei Abbauwege^{1,2}:

- Diaminoxidase (DAO) → Ausscheidung (extrazellulär); Darm, Plazenta, Niere, Thymus, Samenplasma
- Histamin-N-Methyltransferase (HNMT) → intrazellulär; Gehirn, Leber, Milz, Atemwege usw.

Histaminabbau

- DAO benötigt Kupfer, Vitamin B6, Vitamin C, Zink und Mangan.
- HNMT benötigt Methionin, Magnesium, Mangan, Eisen, Coenzym Q10, Vitamin B2, Vitamin B6, Vitamin B12, Folsäure und Vitamin B3.
- Ohne diese Stoffe ist ein ausreichender Histaminabbau nicht möglich.
- Viele Patienten leiden an einem Mangel an mindestens zwei Cofaktoren

Histaminabbau

Medikamente, die die DAO blockieren:

- N-Acetylcystein (Hustenlöser)
- Amitryptilin (Antidepressivum)
- ASS (Aspirin)
- Metamizol (Analgetikum und Antipyretikum)
- Diazepam (Benzodiazepin)
- Prilocain (Lokalanästhetikum)

Sonstige:

Alkohol

Medikamente, die die HNMT blockieren:

- Chloroquin (Malariamittel)
- Tacrine (Alzheimer-Krankheit)
- Diphenhydramin (H1-Blocker)

DAO- und Histaminintoleranzdiagnose

Diagnose Histaminintoleranz: Lösung wird an der falschen Stelle gesucht

Klassische Diagnose:

- Diaminooxidase-Normalwert: >10 Einheiten/ml (U/ml)
- Histaminintoleranz: <10 U/ml (10–15 U/ml: klinische Symptome beachten)

Aber:

- Der Nachweis hoher Histaminwerte im Darm, Blut oder Urin korreliert nicht immer mit einer niedrigen DAO-Aktivität.
- Patienten mit niedriger DAO-Aktivität weisen nicht immer automatisch Symptome einer Histaminintoleranz auf.
- Die Bestimmung der DAO-Aktivität allein ist nicht ausreichend.

Diagnose Histaminintoleranz: Lösung wird an der falschen Stelle gesucht

....und:

- Hohe Histaminwerte im Stuhl/Blut können verschiedene Ursachen haben.
- Besonders problematisch sind Entzündungen des Darmepithels.
- Entzündungen gehen mit einer endogenen Histaminausschüttung einher.
- Führt zu einer verminderten DAO-Ausschüttung, was wiederum zu Nahrungsmittelunverträglichkeiten (z. B. Laktoseintoleranz) führt.

Je länger die Darmschleimhaut entzündet ist, desto weniger DAO kann produziert werden. Dadurch gelangt mehr Histamin ins Blut.

Ein niedriger DAO-Spiegel ist fast immer die Folge einer chronischen Darmentzündung und nicht das primäre Problem.

Diagnosepfad

1. Führen Sie einen Mikrobiomtest durch, um eine Darmdysbiose auszuschließen

- Optional: Screening auf Histamin im Stuhl
- 2.: Histaminbestimmung im Heparinblut, Histamin im zweiten Morgenurin oder 24-Stunden-Sammelurin, Methylhistamin im zweiten Morgenurin oder 24-Stunden-Sammelurin.
- Falls einer dieser Parameter auffällig ist, kann eine erweiterte Diagnostik erfolgen: DAO, HNMT.

Die Bestimmung der DAO als erster Parameter führt oft in die falsche Richtung.

fragen

Histamin und Probiotika: Geht es um die Fähigkeit zur Histaminproduktion?

- Viele Marken werben mit Probiotika gegen Histaminintoleranz.
- Oftmals nur mit fehlender Histaminproduktionsfähigkeit.
- Aber sollten wir uns darauf konzentrieren?
 - Verschiedene Kommensalen können Histamin produzieren.
 - Histamin kann entzündungshemmend wirken.
 - Auch wenn Bakterien Histamin produzieren können, heißt das nicht, dass sie es auch tun.
 - 4. Mikroben können die endogene Histaminfreisetzung induzieren oder unterdrücken.

Es ist also komplex. Wie behandelt man es dann?

Es ist unmöglich, die Histaminquelle (Nahrung, Bakterien, Mastzellen) oder die Ursache der Beschwerden (H1R vs. H2R, beeinträchtigte DAO, Histaminüberschuss) zu kennen. Wie kann man dann behandeln?

Schritt 1: Behandlung der gesamten Darmökologie durch personalisierte Mikrobiomtherapie

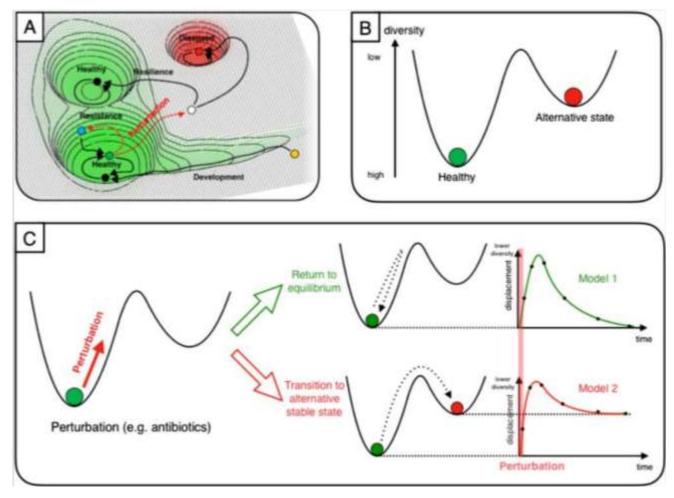
- Beseitigt Leaky-Gut-Syndrom
- Reduziert Entzündungen
- Senkt die Expression von HDC/Histaminproduktion von Pathogenen/Kommensalen
- Moduliert die Expression von Histamin-1- und Histamin-2-Rezeptoren
- Beseitigt Ursachen wie SIBO

Es ist also komplex. Wie behandelt man es dann?

Es ist unmöglich, die Histaminquelle (Nahrung, Bakterien, Mastzellen) oder die Ursache der Beschwerden (H1R vs. H2R, beeinträchtigte DAO, Histaminüberschuss) zu kennen. Wie kann man dann behandeln?

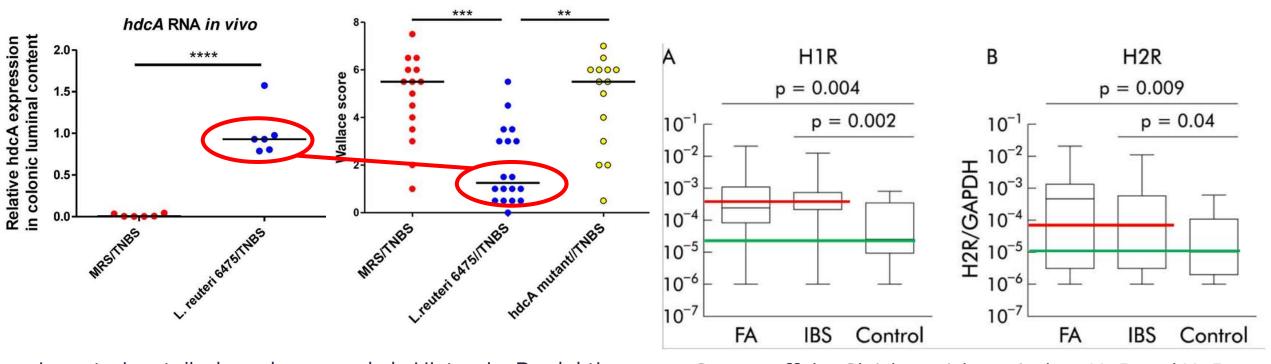
Schritt 2: Ernährung berücksichtigen

- Verwenden Sie unverarbeitete Vollwertkost:
 - Gemüse, frischer Fisch, Fleisch, Obst, Nüsse, Samen, Kräuter, Wasser, Tee, Kaffee
- Optimieren Sie Ihr Darmmilieu, indem Sie es weniger proteolytisch machen:
 - Ausreichend Ballaststoffe, Kohlenhydrate und Fette
 - Fördern Sie die Produktion von Laktat, Acetat, Butyrat und anderen (Fettsäuren) durch die Stimulierung von Laktobazillen und kurzkettigen Fettsäuren (SCFA).
- Vermeiden Sie vorübergehend Lebensmittel, die Symptome auslösen (z. B. Laktose, Fruktose, Gluten usw.).
- Begrenzen Sie Ihre Essgewohnheiten (z. B. durch intermittierendes Fasten).
- Ausreichend DAO-Kofaktoren (Kupfer, B6, C usw.)


(Optionaler Schritt 3: bei sehr schwerwiegenden Fällen)

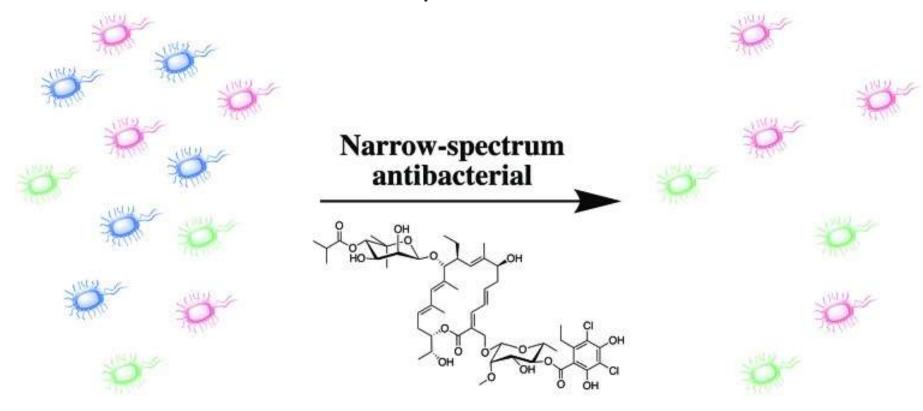
- Vermeiden Sie vorübergehend die 7 histaminreichsten Lebensmittel (Studie ¹):
 - 1. Sauerkraut
 - 2. Auberginen
 - 3. Spinat
 - 4. Fermentiertes Soja
 - 5. Geräucherter Käse
 - 6. Rohwurst
 - 7. Fischnebenerzeugnisse
 - DAO-Fänger vorübergehend meiden:
 - Alkohol, Aspirin, NAC
 - Spezifische verschreibungspflichtige Medikamente
- Vorübergehende DAO-Supplementierung

Das Mikrobiom ist eine Ökologie: Das Gleichgewicht ist entscheidend



- Aus ökologischer Sicht geht es um Gleichgewichtspunkte.
- Dies lässt sich anhand eines Balls in einer Stabilitätslandschaft veranschaulichen¹.
 - Störungen des Mikrobioms können als Kräfte betrachtet werden, die den Ball aus seinem Gleichgewicht bringen.
- Ein gesundes Ökosystem besitzt "Resilienz": Widerstandsfähigkeit gegen Veränderungen.
- Bei einem gestörten Mikrobiom besteht das Ziel darin, es wieder in einen gewünschten stabilen Zustand zu bringen.
 - Dies geschieht durch die Behandlung störender Faktoren wie Krankheitserreger, Entzündungen, Permeabilität usw.

Das Mikrobiom ist eine Ökologie: Das Gleichgewicht ist entscheidend

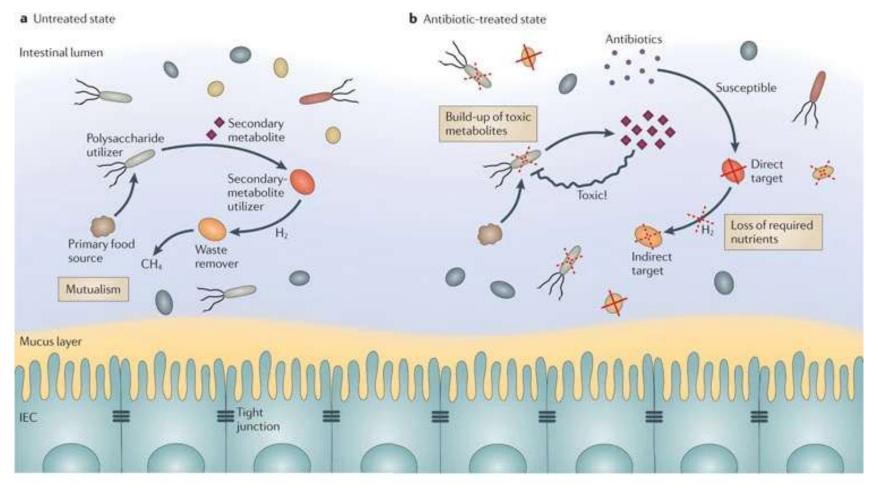

L. reuteri: entzündungshemmend, da Histamin-Produktion

Gesamteffekt: Gleichgewicht zwischen H1R und H2R

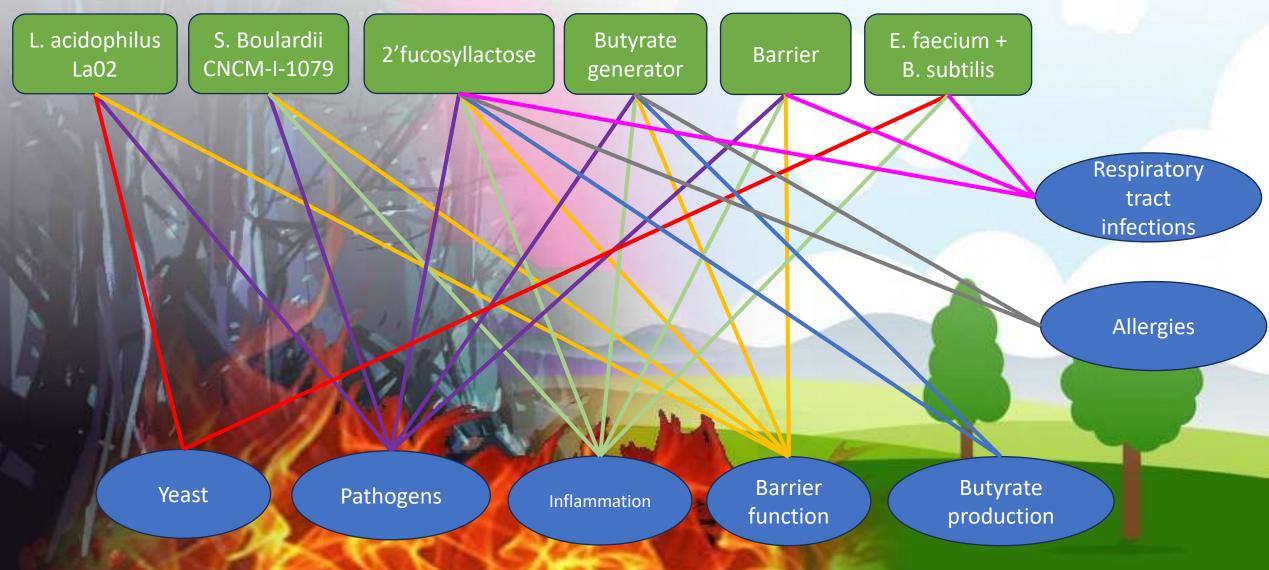
In einem Ökosystem gilt die reduktionistische Ursache-Wirkung-Theorie nicht.

Klassische Sichtweise zu Schmalspektrum-Antibiotika:

Melander, R. J. et al.MedChemComm.9,.12.(2017)

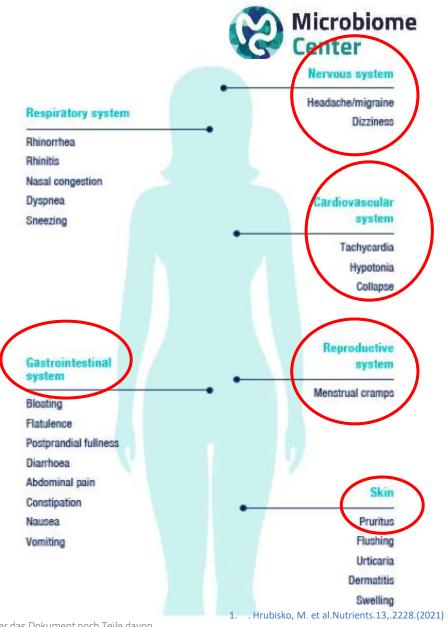

In einem Ökosystem gilt die reduktionistische Ursache-Wirkung-Theorie nicht.

58


Die ökologische

Realität:

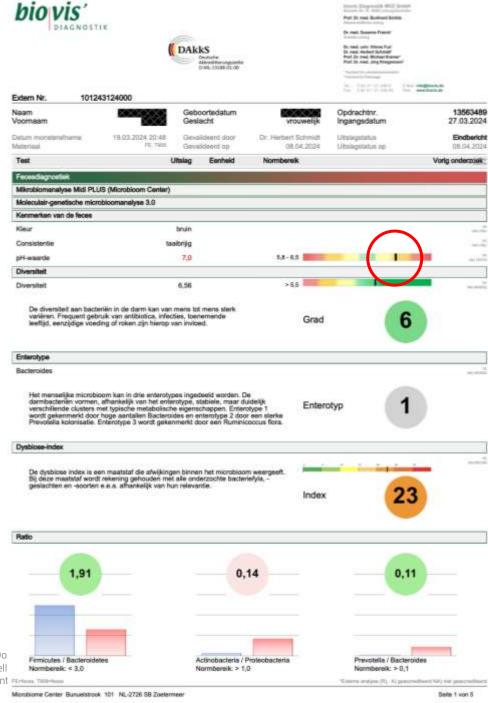
In einem Ökosystem geschieht alles gleichzeitig


Fall 2 Histamin

Patientin: 46-jährige Frau

Symptome:

Stimmungsschwankungen (seit ca. 16 Jahren)


- Diagnose: Depression/Bipolare Störung.
- Magen-Darm-Probleme und Nahrungsmittelallergien (seit ca. 8 Jahren)
 - Symptome: Blähungen, schwankender Stuhlgang, Bauchschmerzen.
 - Reaktionen auf Gluten, Eigelb und Tomaten.
- Mastozytose mit anaphylaktischen Anfällen (seit ca. 8 Jahren)
 - Auslöser: Nahrungsmittel, Stress, körperliche Anstrengung (hohe Intensität), hormonelle Veränderungen (Menstruation).
 - Benutzt etwa einmal im Monat einen EpiPen und musste aufgrund einer Mastozytose-Anaphylaxie mehrfach in die Notaufnahme.
- Chronischer Stress, Anspannung, Müdigkeit, niedrige Energie
- Schwindel, Schwäche, Benommenheit, Tachykardie
- Mastozytose-bedingte Hautflecken

Fall 2 Histamin

Mikrobiom-Ergebnisse April 2024:

- Dysbiose
- Niedriger Akkermansia-Spiegel
- Hoher Fettgehalt
- Erhöhter Zonulinspiegel

aam	Co.	slacht	vrouwelijk	Opdrachtnr. Ingangsdatum	1356348 27.03.202
Test	Ultslag	Eanheid	Nomberek		Vorig onderzoel
indeling van bacteriën naar fyl	um				
Actinobacteria	0,6	%	1,5 - 7		0.00
Bacteroidetes	32.4	14	26 - 45		
Firmicutes	62.0	%	50 - 75		-
Fusobacteria	0,0	%	0,0 - 1,0		
Proteobacteria	4.2	%	1,0 < 3,9		
Verrucomicrobia	0,0	90	1,5 - 5,0		1000
Overige	0.7	*			91.86
Metaboloom (stofwisselingsac		E-1			-0.00
Secundaire galzuren	-17.5			-	
TMA / TMAO	676.6	*		Pinner and	
				-	
Indoxylsulfaet	-50,0	*		100	
Fenden	120,5	56		-	
Ammoniak	12.6	%			
Histamine	-50,0	%		1.	
Equal	137,0	14			
Beta-glucuronidasen	-31,6	*			
indeling van bacteriën naar fyl	um met de belangrijkate bac	teriogaelachten en	-ecorien		
Actinobacteria	- TH				
Bifidobacterium	1,2 x 10'9	KVE/g feces	> 1,0 x 10*10		
Bacteroidetes					
Bacteroides	1,1 x 10*11	KVDg feore	> 5,0 ×10*10		
Prevotella	1.2 x 10^10	KVEIg feces	> 1,0 × 10*10	- 1	
Firmicutes	1,101,024200		S. S. S. S. C. C. C.		
Butyraetproducerende bacteri	š n				
Totasi kiemgetai	2,1 x 10*11	KVEig feces	> 2,4 x 10*11		-
Faecalibacterium prausnitzii	6.6 x 10*10	KVE/g feces	>1.0 x10^11 E		
Eubacterium rectale		KVDg feces	> 2,0 x 10°10		410
Eubecterium hallii	2.6 x 10*10		> 1.5 × 10*10		_
	A 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	KVEIg feces	> 3.0 x10*10		
Roseburia spp.					100 100
Ruminococcus app.	3,8 x 10°10		> 5.0 x 10*10		-
Coprococcus spp.	3,0 x 10*10		> 5,0 × 10*10		100.000
Butyrivibrio spp.	3.5 x 10°10	KVEIg feces	>1,5 x 10*10		-
Clostridia					
Totaal kiemgetal	8,3 x 10*9	KVE/g feces	< 4,0 x 10*9		100,000
Clostridia Cluster I	3,3 x 10^7	KVE/g feces	< 2,0 x 10*9		-
Functional					
Fusobacterium	1,9 x 10*7	KVEig feors	< 1.0 x 10*?		
Verrucomicrobia					
Akkermansia muciniphila	1,0 x 10/6	KVE/g Noos	> 5,0 x 10°9 ■		
Proteobacteria	STOCKER ACTO	ned Stanziller	110000000000000000000000000000000000000		-
Pathogene of potentieel patho	gene bacteriën				
			< 5,0 × 10*8	-	
Haemophilus app.	5,8 x 10º6	KVIDg feces	~ 5,0 × 10 · 0		

Naam CO	××××××××××××××××××××××××××××××××××××××	slacht	5000000	Opdrachtnr.	13563489
Test	Utslag	Eenheld	vrouwelijk Normberelk	Ingangsdatum	27,03,2024 Vorig onderzoek
Proteus spp.	< 1.0 x 10°5		< 1.0 x 10%		vong oncerzoes.
Klebsiella spp.		KVE/g feces	< 1.0 x 10*7		-
Enterobacter spp.		KVE/g feces	< 1.0 x 10*6		-
		KVE/g faces	< 1,0 x 10*7	100	
Serratis spp.	< 1.0 x 10 %		< 1.0 x 10%		91,0000
Hafnia spp.	< 1,0 x 10°5		< 1.0 x 10*6	10	1000
Morganella spp.				-	5110
Citrobacter spp.		KVE/g faces	4 5,0 x 10*8		-
Pseudomonas app.		KVE/g faces	+ 5,0 x 10*7	100	-
Providencia app.	< 1,0 x 10^5	KVE/g feces	< 5,0 x 10°7	1011	Alama
H25-vorning	7/22//02/02	1200200000	Contact State Of		
Suflastreducerende bacteriën (SRB)	1,8 x 10^10		+ 2,5 x 10°9		
Desuffovibrio piger	< 1.0 x 10^5		< 1,0 x 10^8		91900
Desuffornonas pigra	< 1,0 x 10°5		< 1,0 x 10*8		1000
Bilophila wadoworthii	< 1,0 x 10^5	KVE/g feces	+2,0 x 10*9	100	-
Immunogeniciteit / mucine vorming					
Immunogeen werkende bacteriën	C-24-0-12	1020-07-	702557002		
Escherichia coli		KVE/g feces	10^6 - 10^7		
Enterococcus spp.		KVE/g feces	10*6 - 10*7		-
Lactobacillus spp.	< 1,0 x 1015	KVE'g faces	10*5 - 10*7		Services.
Mucine vorming / slijmvliesbarriëre					
Akkermansia muciniphila	1,0 x 1045	KVE/g faces	> 5.0 ± 10*8		
Faecalibacterium prausnitzii	6,6 x 10°10	KVE/g foces	>1,0 x10^11		1000
Archaea					
Methanogenen					
Methanobrevibacter spp.	1,5 x 10°9	KVE/g faces	< 5,0 x 10^8		-
			Opmerking: Het nieuw matek maken een nog vooral bij grampoelitee Dit resulteert in Schle v We vragen u bier reke	a OmioSnab Luisje en di das effectievere novembra amalyse re o basiserión. o traschulvingen in de normbere ning mee te houden.	rh sanwezige nogelijk, iksen.
Mycobioom: relevante gisten					
Candida albicans (CA)	<1.0 x 10*3	KVE/g feces	~1,0 x 10*3	10 4	
Candida krusei (CK)	<1.0 x 10*3	KVE/g feces	< 1.0 x 10*3	100	
Candida glabrata (CG)	<1.0 x 10*3	KVE/g feces	< 1,0 x 10*3		
Candida dubliniensis (CD)	<1.0 x 10*3	KVE/g feces	< 1,0 x 10*3	THE STATE OF	-
Candida parapsilosis (CP)	<1.0 x 10*3		< 1.0 x 10^3	100	
Candida tropicalis (CTp)	<1.0 x 10°3		< 1.0 x 10*3	100	-
Candida lustaniae (CL)	<1.0 x 10*3		< 1.0 x 10^0	100	-
Parasieten	-130 % 100 4				10,000
Puthobionian					
Blastocystis hominis	positief		negation		-
Dientamoeba fragilis	grenswaarde		negative		-
Pathogene damprotozoa	g-s		7 YOM OUT 1		4444
Giardia lambila	negatief	9	negation	100	
Entamoeba histolytica	negatief		regulate		-
Cryptosporidium spp.	negater		negatief		1000
crypiospondum spp.	negaser		responen :		E.Monito

Seite 2 von 5

"Solecte analysis (R), A) prescreation of NA) and province bent

Naam	$\times\!\!\times\!\!\times\!\!\times\!\!\times\!\!\times\!\!\times\!\!\times\!\!\times\!\!\times\!\!\times\!\!\times$	$\otimes \otimes \otimes \otimes \otimes$	$\times\!\!\times\!\!\times\!\!\times$	Opdrachtnr.	13563489
$\times\!\!\times\!\!\times\!\!\times\!\!\times\!\!\times\!\!\times\!\!\times\!\!\times\!\!\times\!\!\times\!\!\times\!\!\times\!\!$	Cesl	acht	vrouwelijk	Ingangsdatum	27.03.2024
Test	Uitslag	Eenheid	Normbereik		Vorig onderzoek
Cyclospora cayetanensis	negatief		negatief		FE A) MOLEK
Vertering					
Vetgehalte	8,99	g/100g	< 3,5		FE. NA) PHOT
Stikstofgehalte	0,90	g/100g	< 1,0		FE NA) PHOT
Suikergehalte	2,50	g/100g	< 2,5		FE NA) PHOT
Watergehalte	70,62	g/100g	75 - 85		FE NA) PHOT
Extra parameter(s)					
Calprotectine	<17,90	mg/l	< 50		FE A) ELSA
Alfa-1-antitripsine	<1,8	mg/dl	< 27,5		FE A) ELISA
Secretoir Immunoglobuline A	484,0	μg/ml	510 - 2040		FE A) ELISA
Zonuline	73,47	ng/ml	< 55		FE
Histamine in feces	<200,0	ng/ml	< 959		A) ELISA T909
Secretoir Immunoglobuline A	484,0	μg/ml	510 - 2040		A) ELISA FE A) ELISA

Fall 2 Histamin

Behandlung: MyOwnBlend Ergebnisse:

- Weniger Bauchschmerzen
- Verbesserter, festerer Stuhlgang
- Weniger Mastozytose-Anfälle (kein EpiPen seit Beginn der MOB-Behandlung)
- 6 Monate)
- Weniger allergische Reaktionen auf Lebensmittel wie Gluten
- Mehr Energie
- Besserer Schlaf
- Weniger Muskel- und Gelenkschmerzen
- Weniger mastozytosebedingte Hautflecken
- Weniger Schwindel und Schwäche
- Gewichtszunahme (als würden Nährstoffe besser aufgenommen)

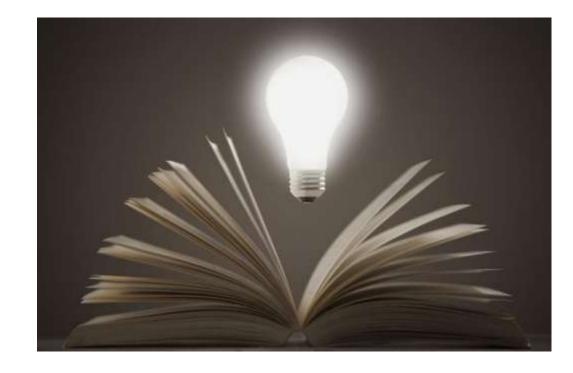
MC ID	Element	Dagdosering
M002	MyOwnBlend, ma gistrale bereiding 2 maanden (oraal)	
BB058	S. Boulardii	2
BB044	L. sakei probio65	2
BB028	L. plantarum P-8	2
BB027	L. rhamnosus SP1	1
BB021	Bacillus coagulans Unique IS-2	2
BB023	2'-Fucosyllactose	4
BB011	Butyraat generator	2

Fall 2 Histamin

 Zweite Mikrobiomanalyse November 24:

aam 🚾 💮	Ge	slacht	vrouwelijk	Opdrachtnr. Ingangsdatum	138475 29.10.20
Tool	Ultslag	Eenheid	Normbereik		Vorig onderzoe
Indeling van bacteriën naar fylum					
Actinobacteria	0,5	(87)	16-7		
Bacteroidetes	29.7	*	20 - 45		-
Firmicutes	59.3	4	50 - 75	-	
Fusobacteria	0.0	*	0.0 - 1.0		
Proteobacteria	3.2	*	1,0 - 3.5		
Verrucomicrobia	2.3	260	1,5-5.0		-
Overige	5.1	200			
Metaboloom (stofwisselingsactieve bacterieg		n veru	-		
Secundaire galzuren	-28.7	- 4			
TMA / TMAO	564,1	*			
	-50.0	187			
Indoxylauflaat Feories	67,8				
Fenolen Ammoniak	16,6			100	
Histamine	-50,0		_	_	
Equal	-5,0	%			
Beta-glucuronidasen	-46.3	*			
indeling van bacteriën naar fylum met de bek Actinobacteria	angrijkate bac	tenegeslachten er	1-econten		
Bifdobacterium	0.7 v 4000	KVE/g feces	> 1,0 ± 10*10		
Bacteroidetes	-0,7 X 10°G	court inces	2 1/4 /L 10: 10:	-	***
Bacteroides	8,5 x 10^10	KVE's fores	> 5.0 ×10*10	- 1	
Prevotela	7.2 x 10^10		> 1,0 x 10*10	-	100
Prevotella copri	6	%	1/6 8 - 10	-	
Firmicutes		0.7911			90.00
Butymatproducerende bacteriën					
Totaal kiemgetal	3,3 x 10°11	KVE/g feces	> 2,4 x 10*11	- 1	
Faecalibacterium prausnitzii	8,9 x 10^10		+1,0 ×10*11	- 1	-
Eubacterium rectale	1,1 x 10^10		> 2,0 x 10*10		
Eubacterium halfii	3,2 x 10^10		≥ 1,5 ± 10*10		-
	3,3 x 10^10		> 3,0 ×10*10	-	300
Roseburia app.			> 5.0 x 10*10		
Ruminococcus врр.	3,5 x 10^10				
Coprococcus spp.	3,3 x 10^10		> 5.0 x 10°10		900
Butyrivibrio spp.	1,2 x 10^11	KVE/g feces	>1,5 x 10*10		-
Cicetridia	0.0 - 1010	KVE/g feces	< 4.0 x 10*9		
Totaal kiemgetal	Tr. 18879010				***
Clostridia Cluster I Fuschacteria	1,0 x 10°5	KVE/g feces	< 2,0 x 10*9	-	-
Fuscbacterium	< 1,0 x 10 ⁴ 5	KVE/a ferres	× 1,0 × 10^7	11	_
Verrucomicrobia	~ 1,0 x 10 %	array array	7.500		
Verrusomicrosia Nikermansia muciniphila	6 8 × 1040	KVEIg feces	> 5,0 x 10*9		
Protechadaria	0,0 A 10 B	Transfer invoice	Contract (K. n.		90.00
Pathogene of potentieel pathogene bacteries					
The state of the s					
Haemophilus spp.	2.2 x 10/8	KVE/g feces	< 5,0 x 10*8	10.00	2010

laam 🔛	Ge	slacht	vrouwelijk	Opdrachtnr. Ingangsdatum	1384	
Test	Ultsing	Eenheid	Normbereik	mgangasatum	Vorig ander	
Acinetobacter spp.	< 1,0 x 10^5		+ 1.0 × 10%	119	Tong unon	-
Proteus spp.	< 1.0 x 1015		< 1.0 x 10^6	100		-
Klebsiella spp.		KVEig faces	< 1.0 x 10*7			-
Enterobacter app.	< 1.0 x 10^5		< 1.0 × 10%	100		-
Serratia spp.		KVEIg faces	< 1.0 x 10*7			10.000
	< 1,0 x 10 ⁴ 5		< 1.0 x 10 %			-
Hafnia spp.			< 1.0 x 10%			
Morganella spp.	< 1,0 x 10^5					to 90
Citrobacter spp.		KVE/g feces	< 5.0 x 10^6			11/10
Pseudomonas spp.	< 1,0 x 1015		< 5.0 x 10"7	1112		
Providencia spp.	< 1,0 x 1015	KVEig faces	< 5,0 × 10*7	1983		ga. Acc
H2S-vorming			. 41000000000000000000000000000000000000			
Sulfaatreducerende bacteriën (SRB)		KVE/g faces	< 2.5 x 10*9			40.0
Desulfovibrio piger	< 1,0 x 10 ⁴ 5	KVE/g feces	< 1.0 x 10*9	110		N) (84)
Desulfomonas pigra	< 1,0 x 10*5	KVEig feces	< 1,0 x 10 ⁴⁹	1111		100
Biophila wadsworthii	< 1,0 x 10^5	KVEIg foces	< 2.0 x 10 ⁴ 9			
Immunogeniciteit / mucine vorming						
Immunogeen werkende becteriën			-			
Escherichia coli	6,7 x 1016	KVEig feces	10^6 - 10^7			he: 00
Enterococcus spp.	1,03 x 10 ⁶	KVE g foces	10^6 - 10^7			10.00
Lactobacillus spp.	< 1,0 x 10^5	KVE/g feces	10*6 - 10*7	5		80 Bo
Mucine vorming / slijmvšesbantère						
Akkermansia muciniphita	8,8 x 10*9	KVE/g faces	> 5.0 x 10^9		- 1	10.00
Faecalibacterium prausnitzii	fl,9 x 10*10	KVEIg foces	>1,0 x10*11			
Archaea						
Methanogenen						
Methanobrev/bacter spp.	1,2 x 10°9	KVEIg foces	< 5,0 x 10*8			
			Opmerking: Het nieuw matrix maken een nog voorsi bij grampoetten Dit resulteert in lichte We vragen uither reke	e Omiclinap-bubije en de daar geffectievere monoteranelyse r et bacteriën. verschuivingen in de nombere ning mee te houden.	fin zumwezige mogelijk, iken.	
Mycobioom: relevante glaten						
Candida albicans (CA)	<1,0 x 10°3	KVE/g feces	<5.0 x 10*3	182		
Candida krusei (CK)	<1,0 x 10°3	KVEIg faces	< 1.0 x 10*3			
Candida glabrata (CG)	<1,0 x 10*3		< 1.0 x 10*3	11 2		-
Candida dubliniensis (CD)	<1,0 x 1013		< 1,0 x 10*3	-		-
Candida parapailosis (CP)	<1,0 x 10*3		< 1,0 x 10*3	200		-
Candida tropicalia (CTp)	<1,0 x 10*3		< 1.0 x 10*3	110		100
Candida Iustaniae (CL)	<1,0 x 10°3		< 1.0 x 10°3			- Day
Cangiga iusitaniae (CL)	<1,0 x 10-3	RVD9 sees	* 130 × 10-3		_	-
Manipolation						
Pathobionten	nositef		negater		and posts	
Parasisten Pathobloriten Blastocystis hominis	position		negater		postv	4.00
Pathobloriten Blastocystis hominis Otentamoeba fragilis	positief positief		negater negater		postv pronzwertig	1.00
Pathobioriten Blastocywis hominis Dientamoeba fragilis Pathogene damprotozoa	positel		negatief		gronzwortig	-
Pathobloriten Blastocystis hominis Otentamoeba fragilis				-		100



Naam XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	Gesla	acht	vrouwelijk	Opdrachtnr. Ingangsdatum	1918	10.2024
Test	Uitslag	Eenheid	Normbereik		Vorig one	Jerzoek .
Cryptosporidium spp.	negatief		negatief		negativ	FE. A) MOLEK
Cyclospora cayetanensis	negatief		negatief		negativ	FE A) MOLEK
Vertering						
Vetgehalte	8,80	g/100g	< 3,5		8,99	FE NA) PHOT
Stikstofgehalte	0,89	g/100g	< 1,0		0.00	FE NAJ PHOT
Suikergehalte	2,62	g/100g	< 2,5		2,50	FE NA) PHOT
Watergehalte	71,57	g/100g	75 - 85		70,62	FE NA) PHOT
Extra parameter(s)						
Calprotectine	<17,90	mg/l	< 50		<17,90	FE A) ELISA
Alfa-1-antitripsine	<1,8	mg/dl	< 27,5		<1,8	FE A) ELISA
Secretoir Immunoglobuline A	540,2	µg/ml	510 - 2040		484,0	FE. A) ELISA
Zonuline	45,28	ng/ml	< 55		73,47	FE. A) ELISA

Kernaussagen

- Histamin spielt eine wichtige physiologische Rolle! Ohne Histamin ist ein Leben unmöglich.
- Histaminempfindlichkeit kann viele Ursachen haben.
- In vielen Fällen ist ein niedriger Spiegel des Histamin abbauenden Enzyms DAO eher die Folge als die Ursache einer Entzündung.
- Ob probiotische Bakterien Histamin produzieren können, spielt keine große Rolle.
- Bei der Behandlung des Mikrobioms kommt es auf das Gleichgewicht an.
- Für einen Arzt ist es unmöglich zu wissen, ob die Histaminempfindlichkeit die Ursache der Folge, endogen oder extern ist.
- Bei Darmproblemen: Beginnen Sie mit der Behandlung des Mikrobioms.
 - Optimieren Sie Ihre Ernährung für eine gesunde Darmflora und berücksichtigen Sie in schweren Fällen den Histamingehalt.

Webinar-Kalender

Intervisions/Arbeitskreisen

May 19th: Starter meeting (NL)

May 21st: Arbeitskreis 2: discuss cases (DE)

June 3rd: Arbeitskreis 1: starters (DE)

June 5th: Intervision: discuss cases (NL)

June 26th: Arbeitskreis 2: discuss cases (DE)

Thematische Webinare:

13. Mai: Allergien (DE)

