

Webinar SIBO

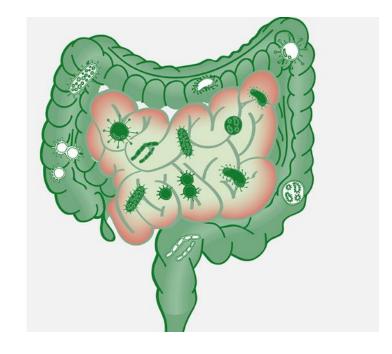
Medical topics

Karin Pijper Founder MC, Medical director, family doctor

Moderator

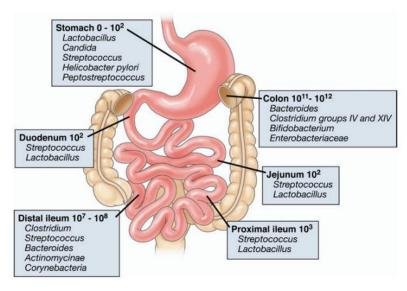
Wim de Jong General director

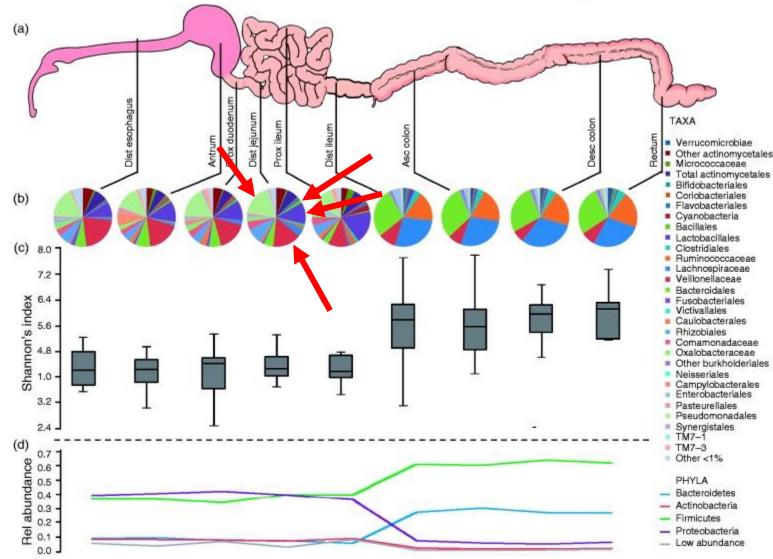
Scientific topics


Dennis Zeilstra
Director for science
and technology

1. What is SIBO?

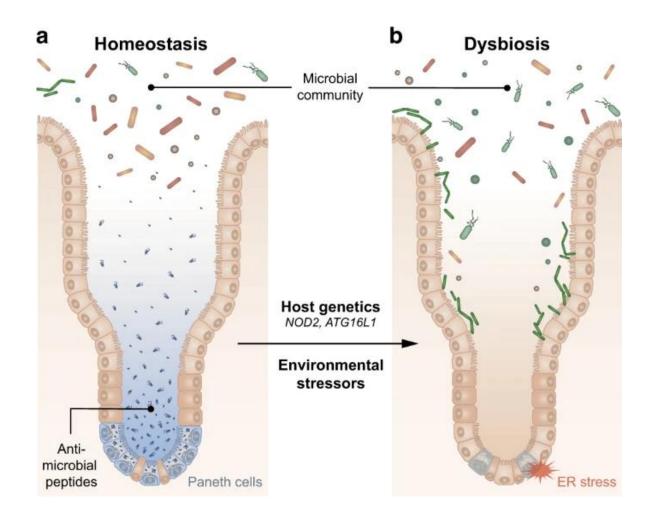
SIBO is short for Small Intestinal Bacterial Overgrowth. But what does it mean?


- There is no exact and consistent definition of SIBO¹.
- Origin or term: research from '60 on malabsorption in people with connection between colon and small intestines¹:
 - Bacteria from colon found which can metabolize e.g. amino acids, deconjugate bile acids, break down B12, or synthesize folate.
- Breath test replaced invasive jejunal aspiration and are basis of most of the SIBO research¹.
- Due to issues and inconsistencies the most meaningful definition according to **American Gastroenterological Association** is 1:
 - The presence of excessive numbers of bacteria in the small intestines causing GI complaints.



2. Normal small intestinal ecology

- The further analysis methods develop, the more complex the picture gets^{1,2}.
- Note: in upper part of small intestines the abundance of Bacillales and Lactobacillales is relatively high.



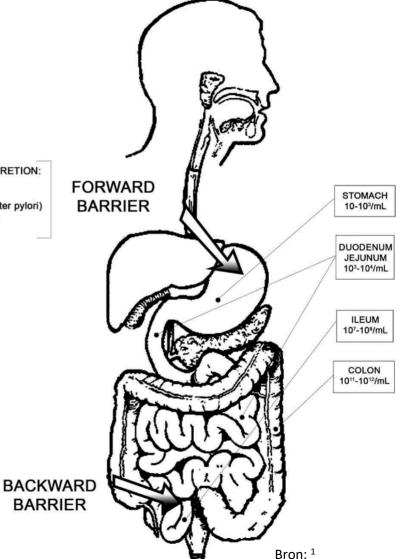
^{1.} R. B. Sartor, Gastroenterology. 134, 577–594 (2008). The contents of this document are property of Microbiome Center and are classified as confidential. Neither the document, nor parts thereof may be published, reproduced, copied, 2. F. Vuik et al., United European Gastroenterol J. 7, 897–907 (2019). made public, or distributed without explicit written permission of Microbiome Center. This content shall not be considered medical advice and is provided for information purpose only. The content is exclusively intended for health care professionals.

2. Normal small intestinal ecology

- In the upper small intestines, the richest nutrients are available¹.
 - High microbial density would be very disadvantageous for the host.
 - Control of microbes is crucial.
- Two physiological barriers (stomach acid, emptying) are key^{1,2}.
- Other factors play role too^{1,2}:
 - Oxygen gradient
 - Active immune regulation: Paneth cells

M. X. Byndloss, S. R. Pernitzsch, A. J. Bäumler, Mucosal Immunol. 11, 1299–1305 (2018).

W. Ruan, M. A. Engevik, J. K. Spinler, J. Versalovic, Dig Dis Sci. 65, 695–705 (2020)

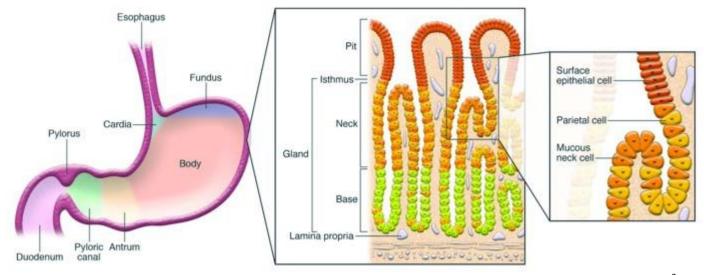


↓ GASTRIC ACID SECRETION:

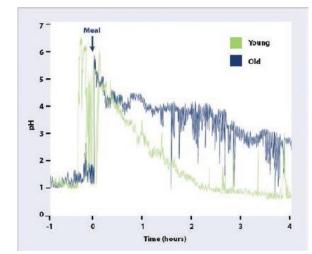
- -Atrophic gastritis
- (autoimmune, Helicobacter pylori)
- -Proton pump inhibitors
- -Advanced age
- -Liver disease

↓ INTESTINAL CLEARANCE:

- -Neuropathies and myopathies
- -Connective tissue diseases
- -Radiation enteropathy
- -Paraneoplastic syndrome
- -Amyloidosis (primary and secondary)
- -Medications (opiates, tricyclic antidepressants, anticholinergics)
- -Duodenal and jejunal diverticulosis
- -Fistulas
- -Strictures
- -Blind loops (e.g Roux-en-Y)
- -Resection of ileocecal valve
- -Diabetes mellitus
- -Hypothyroidism
- -Inflammatory bowel diseases
- -Irritable bowel syndrome
- -Celiac disease
- -Portal hypertension related to hepatic diseases
- -Immune system dysfunction
- -Liver disease

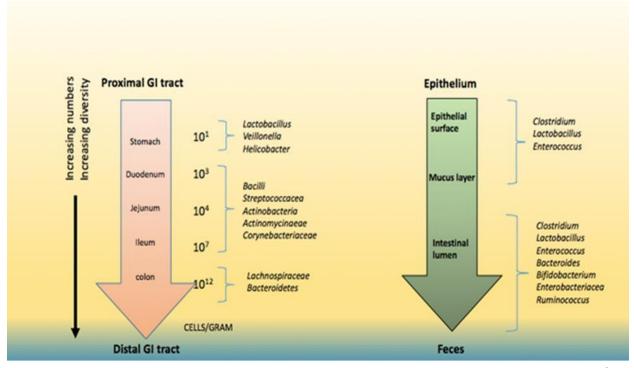


- The ecological circumstances in the small intesines determine the local microbiome.
- Two physiological barriers ensure compartimentalisation of the small intestines¹:
 - The acidic stomach
 - Continious emptying of the small intestines (motility, secretion bile, pancreas enzymes, IgA, etc.)


1. F. R. Ponziani, V. Gerardi, A. Gasbarrini, Expert Review of Gastroenterology & Hepatology. 10, 215–227 (2016).

- Failing forward barrier^{1,2}:
 - Antacids (PPIs)
 - Gastritis (auto-immune, *H. pylori*)
 - Microbiome of stomach³
 - Gastrectomy
 - Aging
- Low stomach acid also leads to²:
 - Malabsorption/deficiencies
 - Food intolerances
 - Infections

Bron: 3

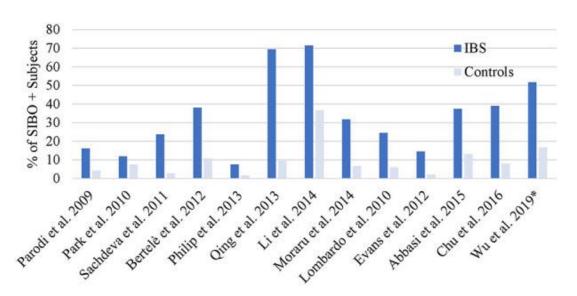

Bron: 2

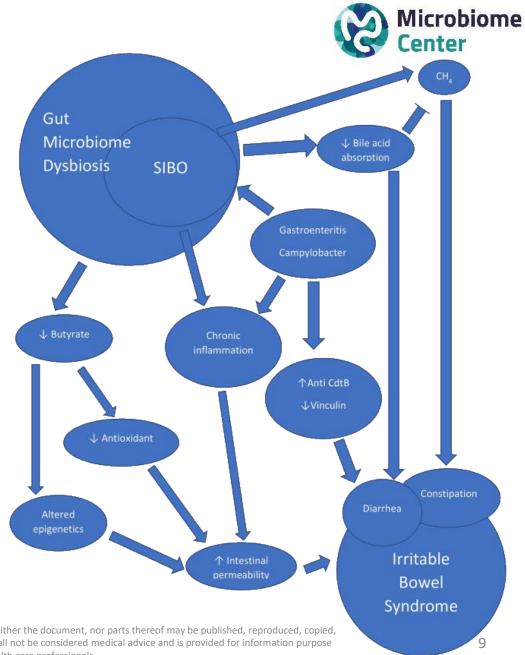
^{1.} F. R. Ponziani, V. Gerardi, A. Gasbarrini, Expert Review of Gastroenterology & Hepatology. 10, 215–227 (2016)

^{2.} T. G. Guilliams, L. E. Drake, Integr Med (Encinitas). 19, 32–36 (2020).

- Failing backward barrier¹:
 - Reduced motility¹:
 - Hypothyroidy
 - Diabetes
 - IBD
 - IBS
 - Celiac disease
 - Medication
 - Portal hypertension due to liver diseases
 - Lowered immune function¹:
 - slgA
 - T-cell deficiency
 - Dysfunction of Paneth cells
 - Anatomical problems (fistulas, diverticulosis, etc.) ¹
 - Lowered excretion of bile acids³
 - Pancreas insufficiency^{3,4}

Bron: 2


F. R. Ponziani, V. Gerardi, A. Gasbarrini, Expert Review of Gastroenterology & Hepatology. 10, 215–227 (2016).


^{2.} H. Zafar et al., Crit Rev Oncog. 25, 365-379 (2020)

^{3.} J. Bures et al., World J Gastroenterol. 16, 2978–2990 (2010).

H. M. Ní Chonchubhair et al., Pancreatology. 18, 379–385 (2018).

- Overlap with IBS¹:
 - Prevalence SIBO is high in IBS patients
 - Large overlap in symptoms
- IBS: set of symptoms
- SIBO: mechanistic explanation
 → most likely subgroup of IBS

4. What do we see in practice?

- After period of (severe) stress
- Use of antacids or antibiotics
- Dietary factors:
 - More carbs
 - Often eating small bits during the day
 - More suger
 - Alcohol

4. What do we see in practice?

Also after:

- (History of) food poisening
- Eating Disorder (e.g. boulimia)
- Lyme's disease and co-infections
- Gastric surgery/bypass
- Pancreas surgery
- Cholecystectomia

Do you recognize this as <u>causes</u>?

5. Consequences and symptoms

- Consequences of SIBO1:
 - Sugars and proteins fermented by bacteria
 - Bile acids deconjugated
 - Toxic metabolites
 - Reduced fat absorption
- Typical symptoms¹⁻³:
 - Bloating
 - Bulging
 - Diarrhea/constipation/fluctuating
 - Pain
 - Burping
 - Fatty stool
 - Flatulence
- Derived symptoms due to malabsorption:
 - Weight loss
 - Vitamin deficiencies: mooneye, hypocalcemia, osteoporosis, etc.

F. R. Ponziani, V. Gerardi, A. Gasbarrini, Expert Review of Gastroenterology & Hepatology. 10, 215-227 (2016).

^{2.} E. M. M. Quigley, J. A. Murray, M. Pimentel, Gastroenterology. 159, 1526–1532 (2020).

S. S. C. Rao, J. Bhagatwala, Clin Transl Gastroenterol. 10, e00078 (2019)

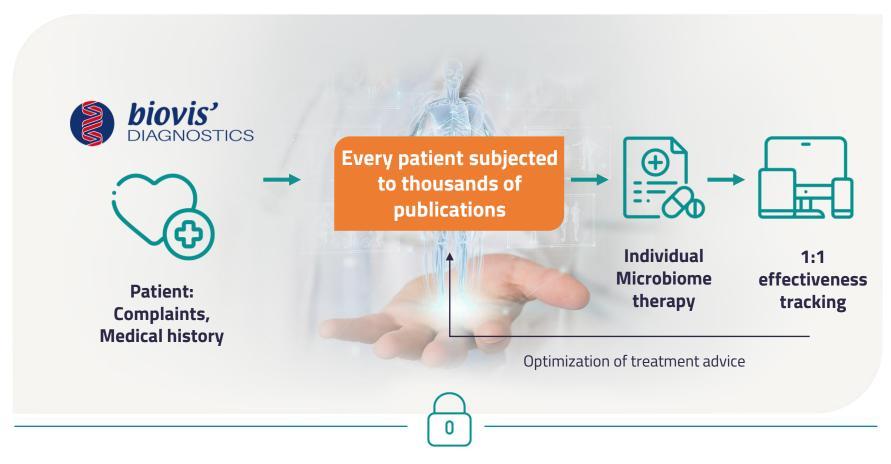
6. Symptoms in practice

- Bloating after eating
- Fatty, sticky feces
- Tired after eating
- Hungry after eating
- Fatigue
- Food intolerances
- Skin problems
- Allergies
- Auto-immune diseases
- Etc.

Do you recognize these symptoms?

Mrs. C.

- Female 52y, Slim and vital, yoga teacher, healthy lifestyle.
- Got Lyme juni '20, received AB double course (Doxy) (with probiotics) because she was late. Severe reaction to AB: constipation and dermatitis, and remained so fatigued.
- Lab sept '20 blood no abnormalities, dermatitis worsened and vague complaints.
- Acting GP prescribed terbinafine for skin, used 2 days and got very ill, so stopped. Received 2 cremes without effect, advice to visit dermatologist but went to own GP Karin first.
- Sensitive gut, predominantly bloating and varying stools, but above all very fatigued!
- Last year up and down dermatitis, itching red rash.

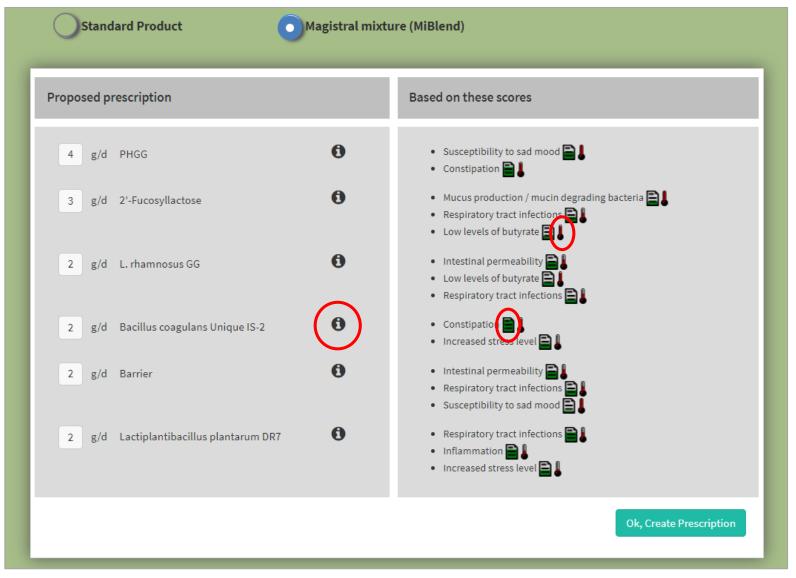

- Diversity 6, dysbiosis index 18, PH 6,9
- A bit low Akkermansia, Enterococci and Lactobacilli
- High fat concentration and elevated zonulin
- Conclusion: "leaky gut" combined with reduced lactobacilli and enterococci, poor fat absorption and slightly elevated PH
 → could be SIBO.

Advice Module makes it **easy** and **fast** to link all the complaints, medical background, and stool analysis results to alle available **evidence** from all ingredients.

mmunogeen werkende bacteriën					
Escherichia coli	1,1 x 10^7	KVE/g feces	10^6 - 10^7		
Enterococcus spp.	< 1,0 x 10^5	KVE/g feces	10^6 - 10^7		100
Lactobacillus spp.	< 1,0 x 10^5	KVE/g feces	10^5 - 10^7	100	
Mucine vorming / slijmvliesbarrière					
Akkermansia muciniphila	4,0 x 10^7	KVE/g feces	> 5,0 x 10^9		
Faecalibacterium prausnitzii	1,3 x 10^11	KVE/g feces	> 5,0 x 10^10		
Vertering					
Vetgehalte	8,90	g/100g	< 3,5		
Stikstofgehalte	1,00	g/100g	< 1,0		
Suikergehalte	2,70	g/100g	< 2,5		
Watergehalte	68,70	g/100g	75 - 85		
Extra parameter(s)					
Calprotectine	21,08	mg/l	< 50		
Alpha-1-antitripsine	21,3	mg/dl	< 27,5		
Secretoir Immunoglobuline A	620,5	μg/ml	510 - 2040		
Zonuline	66,74	ng/ml	< 55		
Speciale gastro-enterologische diagnostiek					
Gluten-sensitieve enteropathie / coeliakie					
Anti-gliadine antilichamen in feces	41,63	U/I	< 100		
Anti-transglutaminase antilichamen in feces	73,49	U/I	< 100		

Microbiome Center makes personalised, evidence base microbiome treatments advice easily accessible for practitioners.

GDPR verified Blockchain



Complaints (example)

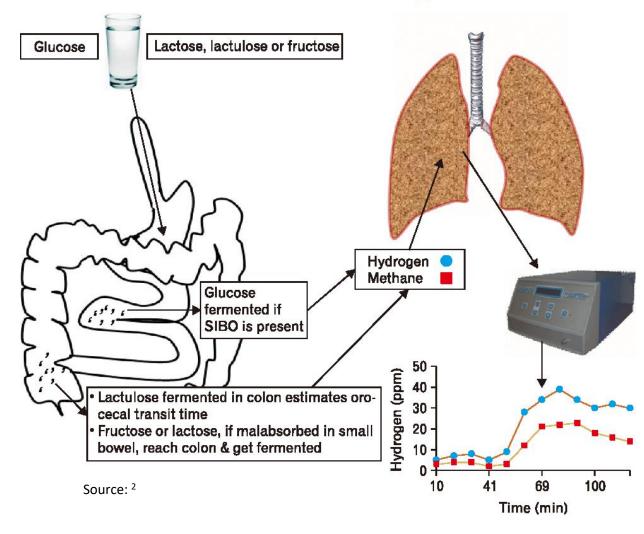
Constipation	3 🕶	Does the patient experience constipation? 0 = no; 1 = yes, may skip a day; 2 = yes, defecation every 2-3 days; 3 = yes, defecation every 4-5 days; 4 = yes, defecation every 6 days or longer;
Diarrhea	0 🕶	How often does the patient experience diarrhea? 0 = never; 1 = once every two weeks; 2 = once every week; 3 = two-three times per week; 4 = four-six times per week; 5 = daily.
Bloating / flatulence	0 🕶	How often does the patient experience bloating/flatulence? 0 = never; 1 = once every two weeks; 2 = once every week; 3 = two-three times per week; 4 = four-six times per week; 5 = daily.
Abdominal pain (gut related)	0 🕶	How often does the patient have abdominal pain? 0 = never; 1 = a few times per month; 2 = a few times per week; 3 = daily, but not throughout the day; 4 = daily throughout the day.
Cognition	0 🕶	Does the patient experience cognitive problems? 0 = no; 1 = somehwat; 2 = quite a bit; 3 = severely; 4 = very severe.
Susceptibility to sad mood	5 🕶	Does the patient experience sad mood? 0 = never; 1 = sometimes; 2 = less than half of the time; 3 = more than half of the time; 4 = most of the time; 5 = always.
Increased stress level	1 🕶	Does the patient experience an increased level of stress? 0 = never; 1 = sometimes; 2 = less than half of the time; 3 = more than half of the time; 4 = most of the time; 5 = always.
Anxiety	0 🕶	Does the patient experience an increased level of anxiety? 0 = never; 1 = sometimes; 2 = less than half of the time; 3 = more than half of the time; 4 = most of the time; 5 = always.
Fatigue	4 🕶	How severe was the fatique/exhaustion during the last six months? 0 = symptom not present; 1 = mild; 2 = moderate; 3 = severe; 4 = very severe.
Bacterial vaginosis (smelling	0 🕶	Does the patient have complaints that are indicative for bacterial vaginosis (smelling gray-white
gray-white discharge, itching,		discharge, itching, burning)? 0 = N/A, never; 1 = sometimes; 2 = regularly; 3 = often; 4 = all the time.
burning)		
		Ok

4. Advice (example)

• Left: before MyOwnBlend; right: only 3 weeks later (end of October).

- 20 December 2021
 - Skin calmer, some stains, but hardly visible;
 - No longer fatigued, gut much calmer but varying, sensitive for constipation, notices that milk is tricky.

Follow-up:


- Diversity 5, dysbiosis index 17, PH 6,5
- Immunogenic bacteria improved, gut permeability improved (but not optimal yet), and digestion could be better.
- GI complaints completely resolved
- Once a day a cigar
- Sometimes still constipation after milk products
- Advice: moved to sourdough spelled bread, enzymes with meal and see what happens.

8. Diagnosis

- Symptoms are indicative but non-specific.
 - Together with fatty stool a bit stronger
- Most accurate diagnostic test: direct measurement of bacterial overgrowth¹.
 - Feasibility in practice very limited.
- More practical method: breath test^{1,2}:
 - Fermentation of glucose or lactulose results in H₂ and CH₄: absorbed and exhaled
 - Time till H₂ and CH₄ exhaling is key: within 90 minutes 20 ppm and 10 ppm respectively.

L. D. Bushyhead, E. M. Quigley, Gastroenterol Clin North Am. 50, 463–474 (2021)

U. Ghoshal, Journal of neurogastroenterology and motility (2011), doi:10.5056/jnm.2011.17.3.312.

8. Diagnose: guidelines breath test

• There are different guidelines. An often used recent is the North American Consensus Statement¹:

Preparation:

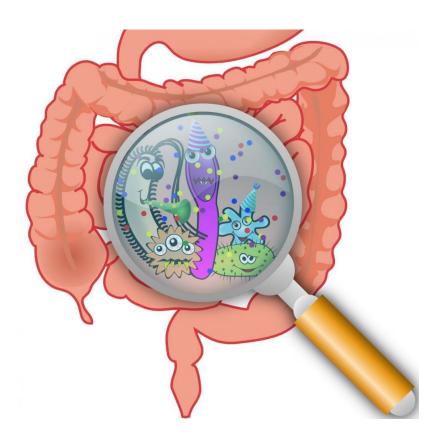
- 1. Stop antibiotics 4 weeks before test
- 2. If the patient can handle it: stop motility-increasing medication and laxatives 1 week before test
- 3. Stop eating fermentable foods (e.g. fibers) the day before the test
- 4. Fast at least 8-12 hours before test
- 5. No smoking on day of test (can increase hydrogen level)
- 6. Minimize physical activity during the test (can lower hydrogen level)
- 7. No need to stop antacids

Execution:

- 8. 10g lactulose with or followed by glass of water (or 75g glucose)
- 9. Measure hydrogen, methane, and nitrogen simultaneously

Interpretation:

- 10. Increase of <u>hydrogen</u> concentration compared to baseline of ≥20 ppm within 90 minutes
- 11. Increase of methane concentration compared to baseline of ≥10 ppm



[.] A. Rezaie et al., American Journal of Gastroenterology. 112, 775-784 (2017).

^{2.} https://www.youtube.com/watch?v=o2caoYTOZhY

- The literature mentions three core parts of treatment^{1,2}:
 - 1. Identifying and treat underlying causes
 - 2. Solve deficiencies
 - 3. Treat bacterial overgrowth

^{1.} E. M. M. Quigley, J. A. Murray, M. Pimentel, Gastroenterology. 159, 1526–1532 (2020).

^{2.} H. Zafar et al., Crit Rev Oncog. 25, 365-379 (2020).

- Point 1, identify and treat underlying causes:
 - In classic cases, this means (surgical) correction of fistula, diverticulosis, etc.
 - However, in most prevalent cases, this means repairing the two barriers:
 - Forward barrier:
 - Gastric acid
 - Potential influence of antacids, or diet
 - Backward barrier:
 - Solve constipation
 - Bile acid production and excretion
 - Pancreas enzymes
 - Immune system

• **Point 2** is about direct solving deficiencies that are (potentially) caused by SIBO.

- This could mean supplementation of:
 - Vitamins (in particular fat soluble)
 - Minerals
 - Proteins
 - Essential fatty acids

Point 3 is about actual treatment of SIBO.

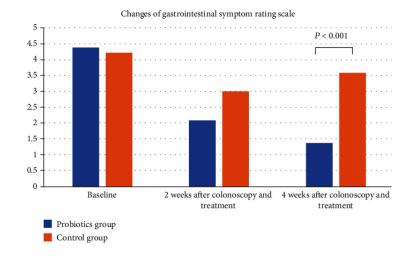
- Traditional guidelines often mention antibiotics¹⁻³:
 - American Gastroenterological Association states that rifaximin is a somewhat more studied option¹.
 - However, targeted AB is desirable but difficult, because many species are present in SIBO.
 - Often relapse: 13% after 3m going up to 44% after 9m⁴
- Now, better treatment is available via microbiome-therapy:
 - Antibiotics disturb the entire microbiome, with many downstream consequences.
 - Meta-analysis of 18 studies published in 2017 shows that probiotic interventions are effective for both overgrowth and symptoms⁵ (**figure**).
 - Another meta-analysis shows that specific strains and combinations are effective in IBS6.

SIBO decontamination rate

Group by	Study name	Statistics for each study				Event rate and 95% CI				
		Event rate	Lower limit	Upper limit	p-Value					
antibiotics+probiotics	Cuoco et al. (2006)	0.826	0.618	0.933	0.005		- 1	1	_	
antibiotics+probiotics	Khalighi et al. (2014)	0.933	0.648	0.991	0.011				-	-
antibiotics+probiotics		0.858	0.699	0.940	0.000				-	•
probiotics	Scarpellini et al. (2006)	0.567	0.388	0.729	0.467				-	
probiotics	Barrett et al. (2008)	0.643	0.376	0.843	0.292				+-	-
probiotics	Gabrielli et al. (2009)	0.475	0.327	0.627	0.752				-	
probiotics	Soifer et al. (2010)	0.800	0.600	0.914	0.006				-	
probiotics	Ockeloen et al. (2012)	0.400	0.158	0.703	0.530			-		
probiotics	Lunia et al. (2014)	0.576	0.405	0.730	0.386				-	
probiotics	Kwak et al. (2014)	0.240	0.112	0.442	0.014			→	-	
probiotics		0.532	0.401	0.659	0.636				•	
Overall		0.628	0.515	0.728	0.027				•	82
						-1.00	-0.50	0.00	0.50	1.00

only. The content is exclusively intended for health care professionals

The contents of this document are property of Microbiome Center and are classified as confidential. Neither the document, nor parts thereof may be published, reproduced, copied, made public, or distributed without explicit written permission of Microbiome Center. This content shall not be considered medical advice and is provided for information purpose


9. Treatment: MyOwnBlend components for SIBO

Strains with good efficacy evidence for SIBO:

- Enteroccus feacium + B. subtilis^{1,2}.
 - Large effect on symptoms (figure) and on positive SIBO test (56% vs. 28%)¹.
- Bacillus clausii^{3,4}
- Bacillus coagulans⁵
- Saccharomyces boulardii (figure)⁶
- PHGG⁷

NB: a number of these studies are included in the metaanalysis (previous slide)

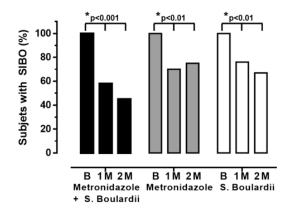
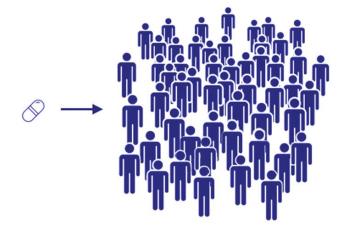


Fig. 2 Prevalence of SIBO before and after treatment. Prevalence of SIBO at the beginning of the study (B=basal), first (1M) and second month (2M) after the intervention. Data presented in percentage of patients with SIBO. *Chi-squared test. There was no difference between 1M and 2M

H. Zafar et al., Crit Rev Oncog. 25, 365–379 (2020).

Q.-H. Sun, H.-Y. Wang, S.-D. Sun, X. Zhang, H. Zhang, World J Gastroenterol. 25, 2110–2121 (2019)

M. Gabrielli et al., Am J Gastroenterol. 104, 1327–1328 (2009).
 E. Scarpellini et al., Digestive and Liver Disease. 38, S32 (2006).


A. R. Khalighi et al., Indian J Med Res. 140, 604–608 (2014).

^{6.} G. García-Collinot et al., Dig Dis Sci. 65, 1134–1143 (2020).

^{7.} Furnari. M. et al. Aliment Pharmacol Ther 32, 1000–1006 (2010)

9. Personalized treatment: e.g. unique complaints

- Evidence-based medicine typically based on clinical studies. Studies are valuable, but not necessarily related to <u>your</u> patient¹.
 - The doctor's/practitioner's perspective is reversed: **what is the best for** this **patient**.
- Why? Because each (SIBO) patient has different:
 - Medical background: multimorbidity is the most common chronic condition²
 - Complaints
 - A unique microbiome³ and stool analysis outcomes
 - Preferences
 - Lifestyle, medicine use, diet
- Because every patient is unique, it makes sense to take all aspects of the patient into account

Zeilstra, D. et al. in Proceedings of the 16th International Scientific Conference on Probiotics, Prebiotics, Gut Microbiota and Health (CZECH-IN s. r. o., 2023)

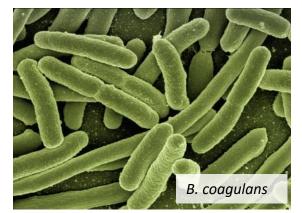
[.] Tinetti, M. E. et al. JAMA 307, 2493-2494 (2012)

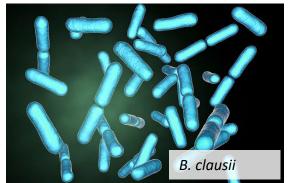
Tierney, B. T. et al. Cell Host & Microbe 26, 283-295.e8 (2019)

10. Diagnosis & treatment in practice

Diagnosis:

- Combination of complaints and diagnostic tests
- Complaints:
 - Bloating
 - Sticky, fatty feces
 - Tired/ill/hungry after eating
- Possibly: stool analysis:
 - High pH
 - Depletion of lactos and enterococcus spp.
 - High level of fat in stool
- Possibly: positive SIBO breath test (Biovis)
- Many IBS patients actually have SIBO




10. Diagnosis & treatment in practice

Practical hints:

- Change diet
 - Towards FODMAP
 - Intermitted fasting
 - Chew properly, limit stress, sleep quality
 - Fresh and dried herbs
- Microbiome treatment:
 - Bacillus coagulans
 - Bacillus clausii
 - Bacillus subtilis + Enterococcus faecium
 - Saccharomyces boulardii
 - PHGG
- Optional: antimicrobial herbs or antibiotics, or enzymes

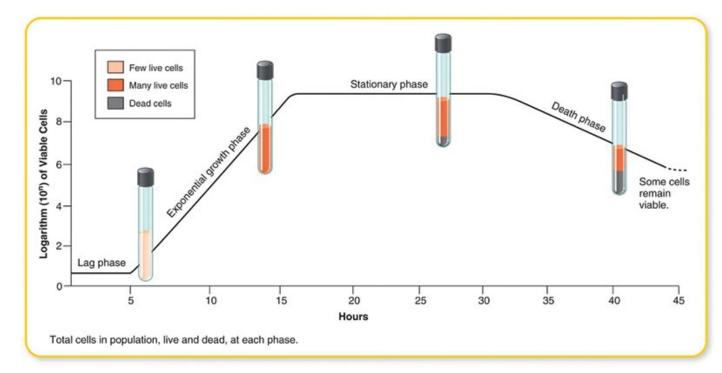
CH₄

S. boulardii

 H_2

12. Approach: microbiome therapy

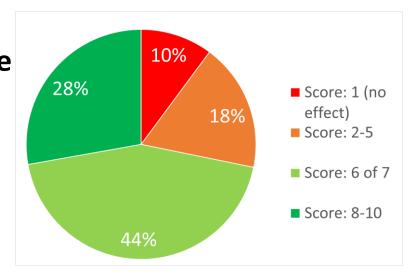
- How to ensure that probiotic microbes are active in upper part of small intestine?
 - Specific strains +
 - Pre-fermentation
- Probiotic bacteria:
 - Cannot metabolize complex compounds
 - Compete with and inhibit undesired bacteria
 - Activate peristaltic



12. Approach: microbiome therapy

Advances of pre-fermentation:

- Re-hydratation in 'friendly environment'
- Bacteria in log-phase:
 - Cell count drastically increased
 - Bacteria metabolically active
 - Larger number survive GI passage
- Already have synthesized pathogene inhibiting metabolites:
 - Lactate
 - Acetate
 - Proprionate
 - Etc.
- Exhausted any nutrients

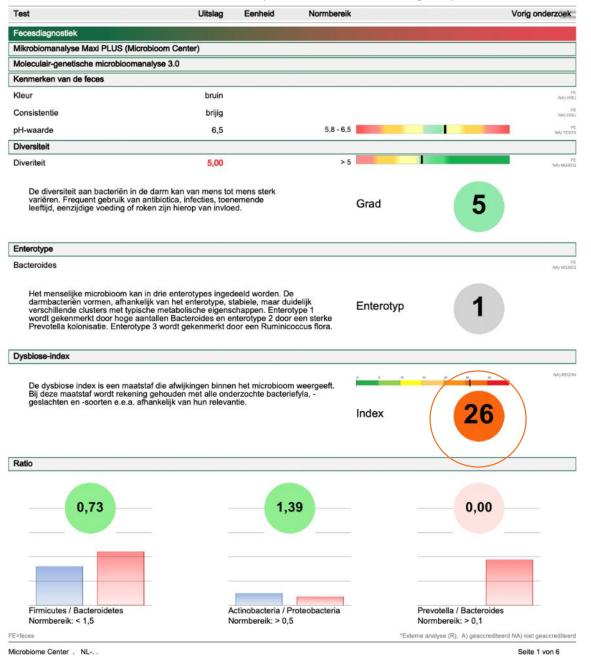


12. Approach: microbiome therapy

The SIBO package contains:

- A MyOwnBlend magistral preparation for 2 months
- Thermos flask with temperature indicator
- Additional SIBO leaflet with explanation on the use of pre-fermentation

SIBO package
+ SIBO >=3
 (n=88)
72% good or
 excellent


Microbiome

13. Case report

Case female, S (50y):

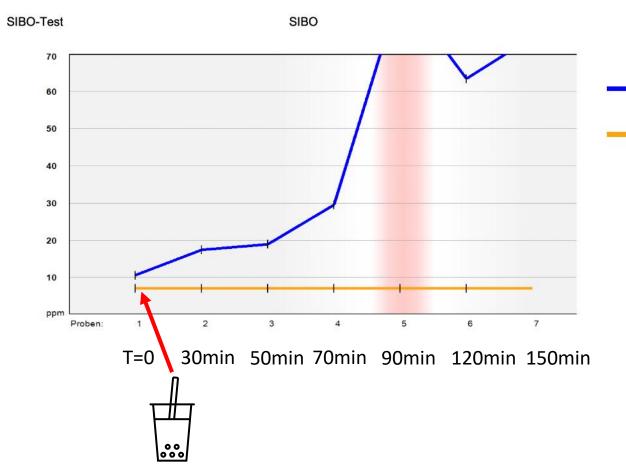
- **Abdominal pain** predominantly left, borborygmi worse after eating, bloating, quickly feeling full and pain in upper part of belly after eating, worse last 4y, very fatigued, poor sleep, less and less appetite, headache, myalgia, sometime feverish feeling.
- History: Endometriosis (for which Mirena), hay fever, sensitive to milk, 2x pyelonephritis last year, 18y ago eccyesis broken at 3mth, seems start of complaints.
- Diet: bread/crackers and cup a soup, **sensitive to veggies**. Not much meat, some fish, no alcohol, some coffee; after reducing wheat and lactose less GI complaints, but no complete resolution.
- Def: varying mushy **fatty**, sometimes very hard, almost never cigar.
- Med: none
- Supplements: none
- Diagnostics: Fecal analysis and SIBO breath test

The contents of this document are property of Microbiome Center and are classified as confidentia made public, or distributed without explicit written permission of Microbiome Center. This content only. The content is exclusively intended fc

Test		Uitslag	Eenheid	Normbereik		Vorig onderzoek
Indeling van bacteriën n	aar fylum					
Actinobacteria		2,5	%	1,0 - 5,0		NA) MGSE
Bacteroidetes		55,3	%	30 - 60		NA) MGSEI
Firmicutes		40,3	%	30 - 60		NA MGSE
Fusobacteria		0,0	%	0,0 - 1,0		NA) MODEL
Proteobacteria		1,8	%	1,5 - 5,0	0	FI NA) MGSEI
Verrucomicrobia		0,0	%	1,5 - 5,0		F
Overige		0,1	%			NA) MGSE(
Metaboloom (stofwissel	ingsactieve bacte					NA) MGSE
Secundaire galzuren		5,4	%			
TMA / TMAO		-49,7	%			
Indoxylsulfaat		-50,0	%			_
Fenolen		-36,8	%			=
Ammoniak			%			_
		-35,0				_
Histamine		-50,0	%			_
Equol		-42,9	%			_
Beta-glucuronidasen		-50,0	%			
Indeling van bacteriën n	aar fylum met de	belangrijkste bac	teriegeslachte	en en -soorten		
Actinobacteria						
Bifidobacterium		2,4 x 10^10	KVE/g feces	> 5,0 x 10^9		NA) MGSE
Bifidobacterium	adolescentis	41	%			NA) MOSE
Bifidobacterium	longum	13	%			FI NA) MGBE
Bacteroidetes						
Bacteroides		4,7 x 10^11	KVE/g feces	> 1,5 x 10^11		NA) MGSE
Bacteroides	plebeius	50	%			NA) MOSE
Bacteroides	uniformis	10	%			FI NA MOSE
Prevotella		2,6 x 10^7	KVE/g feces	> 1,0 x 10^10		NA) MOSE
Firmicutes						New Models
Butyraatproducerende b	pacteriën					
Totaal kiemgetal		2,3 x 10^11	KVE/g feces	> 1,2 x 10^11		NA MGSE
Faecalibacterium prausi	nitzii	1,3 x 10^11	KVE/g feces	> 5,0 x 10^10		F
Eubacterium rectale		3,2 x 10^10	KVE/g feces	> 1,0 x 10^10		NA) MGSE
Eubacterium hallii			KVE/g feces	> 5,0 x 10^9		NA) MOSE
Roseburia spp.		5,8 x 10^10		> 2,0 x 10^10		NA) MOSE
			KVE/g feces	> 3,0 x 10^10		NA) MGSE(
Ruminococcus spp.						NA) MOSE
Coprococcus spp.			KVE/g feces	> 2,0 x 10^10		NA) MOSE
Butyrivibrio spp.		3,7 x 10^8	KVE/g feces	> 5,0 x 10^9		NA) MOSE
Clostridia						F
Totaal kiemgetal		3,6 x 10^9	KVE/g feces	< 4,0 x 10^9		NA) MGSE
Clostridia Cluster I		1,0 x 10^5	KVE/g feces	< 2,0 x 10^9		NA) MGSE(
Clostridium histolyticu	m	< 1,0 x 10^5	KVE/g feces	< 2,0 x 10^9		NA) MGSE
Clostridium perfringen	is	< 1,0 x 10^5	KVE/g feces	< 1,0 x 10^8		NA) MGSE
Clostridium sporogene	es	< 1,0 x 10^5	KVE/g feces	< 1,0 x 10^8		NA) MGSE(
Verdere Firmicutes						
Christensenellaceae		1,6 x 10^8	KVE/g feces	> 1,0 x 10^9		FI NA) MGSE
FE=feces					*Externe analyse (R), A) geaccredited	
Microbiome Center . NL						Seite 2 von 6

le

Test	Uitslag	Eenheid	Normbereik	Vorig onderzoek
Dialister spp.	< 1,0 x 10^5	KVE/g feces	< 4,0 x 10^10	NOWS
Cl. butyricum	5,3 x 10^8	KVE/g feces	> 1,0 x 10^8	NKI MGE
Fusobacteria				1100
Fusobacterium	< 1,0 x 10^5	KVE/g feces	< 1,0 x 10^7	NA) NGS
Verrucomicrobia				TOTAL CONTRACT
Akkermansia muciniphila	< 1,0 x 10^5	KVE/g feces	> 5,0 x 10^9	104) NIGSE
Proteobacteria				The states
Pathogene of potentieel pathogene b	acteriën			
Haemophilus spp.	1,9 x 10^9	KVE/g feces	< 1,0 x 10^9	NA HOSE
Acinetobacter spp.	< 1,0 x 10^5	KVE/g feces	< 1,0 x 10^6	No wast
Proteus spp.	< 1,0 x 10^5	KVE/g feces	< 1,0 x 10^6	100 MOSS
Klebsiella spp.	< 1.0 x 10^5	KVE/g feces	< 1,0 x 10^6	
Enterobacter spp.	< 1,0 x 10^5		< 1,0 x 10^6	NA) MOSE
Serratia spp.	< 1,0 x 10^5		< 1,0 x 10^6	NA) MOSE
Hafnia spp.	< 1,0 x 10 5		< 1,0 x 10^6	NA) MOSE
Morganella spp.	< 1.0 x 10 ⁻⁵		< 1,0 x 10°6	NA) MOSE
	-210.19 (1.410)		< 5,0 x 10^8	NA) MUSE
Citrobacter spp.	< 1,0 x 10^5			NA) MOSE
Pseudomonas spp.	< 1,0 x 10^5		< 5,0 x 10^7	HA) MOSS
Providencia spp.	< 1,0 x 10^5	KVE/g feces	< 5,0 x 10^7	NA) MOSE
H2S-vorming		WW.		
Sulfaatreducerende bacteriën		KVE/g feces	< 2,0 x 10^9	NA) MGSE
Desulfovibrio piger	< 1,0 x 10^5	KVE/g feces	< 1,0 x 10^9	NA) MGSI
Desulfomonas pigra	< 1,0 x 10^5	KVE/g feces	< 1,0 x 10^9	NA) MGEE
Bilophila wadsworthii	< 1,0 x 10^5	KVE/g feces	< 2,0 x 10^9	NA) MOSE
Oxalaatafbrekende bacteriën				
Oxalobacter formigenes	< 1,0 x 10^5	KVE/g feces	> 1,0 x 10^8	NA) NICCE
Immunogeniciteit / mucine vorming				
Immunogeen werkende bacteriën				
Escherichia coli	2,6 x 10^5	KVE/g feces	10^6 - 10^7	NA) MOSE
Enterococcus spp.	5,3 x 10^7	KVE/g feces	10^6 - 10^7	NA) MOSE
Lactobacillus spp.	< 1,0 x 10^5	KVE/g feces	10^5 - 10^7	NA) MISSE
Mucine vorming / slijmvliesbarrière				
Akkermansia muciniphila	< 1,0 x 10^5	KVE/g feces	> 5,0 x 10^9	NA) MOSE
Faecalibacterium prausnitzii	1,3 x 10^11	KVE/g feces	> 5,0 x 10^10	NA) MODE
Archaea		14.5.1		 2. 3.049.00
Methanogenen				
Methanobrevibacter spp.	< 1,0 x 10^5	KVE/g feces	< 1,0 x 10^8	NA) MOSE
Mycobioom: relevante gisten				
Candida albicans (CA)	7,4 x 10 ³	KBE /g Stuhl	<1,0 x 10 ⁴ 3	RAI OPT
Candida krusei (CK)	<1,0 x 10^3	KBE /g Stuhl	< 1,0 x 10^3	NA) GPF
Candida glabrata (CG)	<1,0 x 10^3	KBE /g Stuhl	< 1,0 x 10^3	NAIGH
Candida dubliniensis (CD)	<1,0 x 10^3	KBE /g Stuhl	< 1,0 x 10^3	NA) GPC
Candida parapsilosis (CP)	<1,0 x 10^3	KBE /g Stuhl	< 1,0 x 10^3	
Candida tropicalis (CTp)	<1,0 x 10^3		< 1,0 x 10^3	NA) GPL
Candida lusitaniae (CL)	<1,0 x 10°3		< 1,0 x 10^3	Majore
Curia de destarios (CL)	~1,0 x 10 3		- 1,0 2 10 0	 NA) GPC



Test	Uitslag	Eenheid	Normbereik	Vori	g onderzoek
Parasieten					
Pathobionten					
Blastocystis hominis	negatief		negatief		A) MOLE
Dientamoeba fragilis	negatief		negatief		A) MOLEN
Pathogene darmprotozoa					путосы
Giardia lamblia	negatief		negatief		A) MOLE)
Entamoeba histolytica	negatief		negatief		FE A) MOLEN
Cryptosporidium spp.	negatief		negatief		FE
Cyclospora cayetanensis	negatief		negatief		A) MOLE)
Vertering					A) MOLE
Vetgehalte	5,30	g/100g	< 3,5		FE
Stikstofgehalte	0,40	g/100g	< 1,0		NA) PHOT
Suikergehalte	2,60	g/100g	< 2,5		NA) PHOT
	11.0				NA) PHOT
Watergehalte	81,50	g/100g	75 - 85		NA) PHOT
Extra parameter(s)					
Calprotectine	21,78	mg/l	< 50		FE A) ELISA
Alpha-1-antitripsine	9,5	mg/dl	< 27,5		A) ELISA
Secretoir Immunoglobuline A	1376,3	μg/ml	510 - 2040		FE A) ELIS/
Zonuline	77,03	ng/ml	< 55		FE
Speciale gastro-enterologische diagnostiek	0.8.5.00	1000000			A) ELISA
Gluten-sensitieve enteropathie / coeliakie					
Anti-gliadine antilichamen in feces	<25,00	U/I	< 100		FE
Anti-transglutaminase antilichamen in feces	<50,00	U/I	< 100		A) ELISA FE
	,		100.00		A) ELISA

Microbiome Center . NL-. . Seite 3 von 6

Result breath test of this patient

SIBO-Test (Wasserstoff)			
Ademgasanalyse 1	10,6	ppm	< 20
Ademgasanalyse 2	17,4	ppm	< 20
Ademgasanalyse 3	18,9	ppm	< 20
Ademgasanalyse 4	29,5	ppm	< 20
Ademgasanalyse 5	87,3	ppm	< 20
Ademgasanalyse 6	63,4	ppm	< 20
Ademgasanalyse 7	74,6	ppm	< 20
SIBO-Test (Methan)			
Ademgasanalyse 1	<8,0	ppm	< 10
Ademgasanalyse 2	<8,0	ppm	< 10
Ademgasanalyse 3	<8,0	ppm	< 10
Ademgasanalyse 4	<8,0	ppm	< 10
Ademgasanalyse 5	<8,0	ppm	< 10
Ademgasanalyse 6	<8,0	ppm	< 10
Ademgasanalyse 7	<8,0	ppm	< 10

Conclusion:

Both complaints and analysis match SIBO

Approach:

MyOwnBlend "pre-fermented"

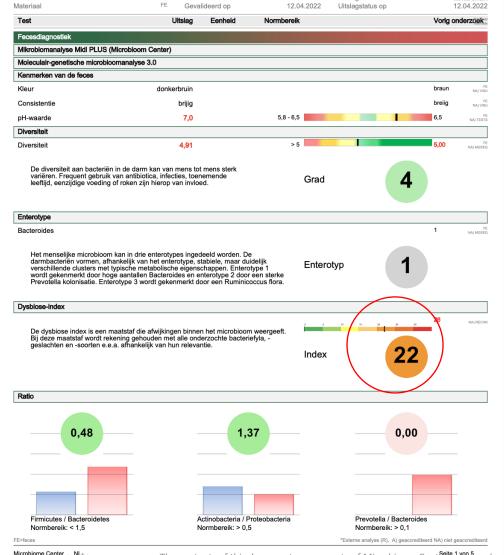
- S. Boulardii
- B. Clausii
- B. Coagulans Unique
- Enterococcus faecium + Bacillus subtilis
- Pathogene reductor

Result:

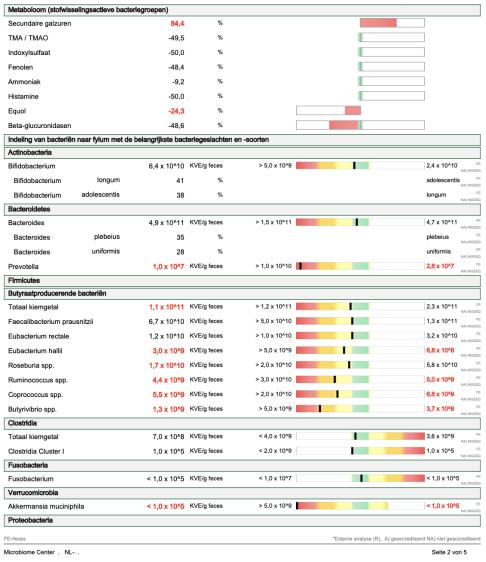
- Belly is now calm
- Improved appetite
- Better tolerance to several kinds of vegetables
- More energy
- Defecation once a day a cigar

Bristol Stool Chart

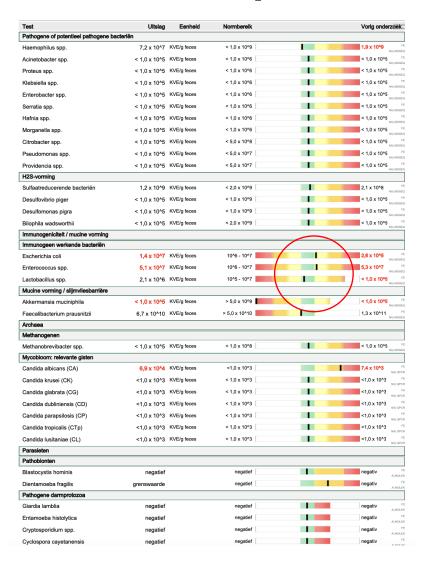
04.04.2022 00:00


Gevalideerd door

Dr. Herbert Schmidt


Uitslagstatus

Eindbericht

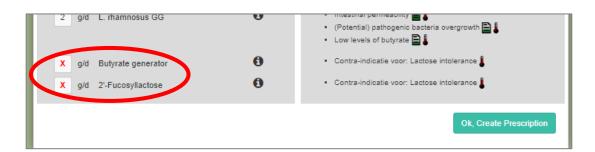

Datum monsterafname

The contents of this document are property of Microbiome Center and are classified as confidential. Neither the document, nor parts thereof may be published, reproduced, copied, made public, or distributed without explicit written permission of Microbiome Center. This content shall not be considered medical advice and is provided for information purpose only. The content is exclusively intended for health care professionals.

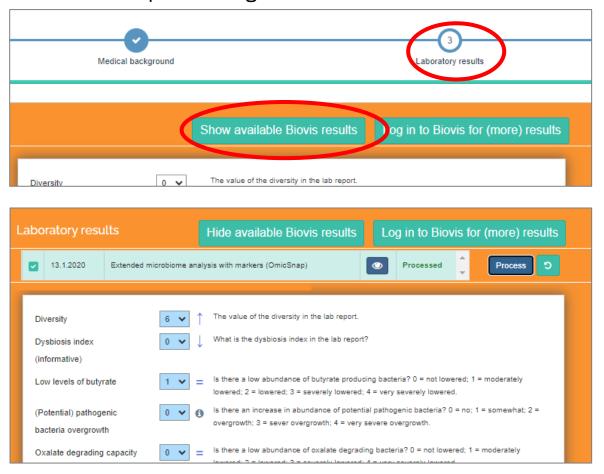
v oomaam	Julia Joo	uon	**************************************	nigarigodatani	0-1.0	, v.L
Test	Uitslag	Eenheid	Normbereik		Vorig one	lerzoek.
Vertering						
Vetgehalte	3,60	g/100g	< 3,5		5,30	FE NA) PHOT
Stikstofgehalte	0,50	g/100g	< 1,0		0,40	FE NA) PHOT
Suikergehalte	2,50	g/100g	< 2,5		2,60	FE NA) PHOT
Watergehalte	80,10	g/100g	75 - 85		81,50	FE NA) PHOT
Extra parameter(s)						
Calprotectine	18,55	mg/l	< 50		21,78	FE A) ELISA
Alpha-1-antitripsine	24,7	mg/dl	< 27,5		9,5	FE A) ELISA
Secretoir Immunoglobuline A	1510,8	μg/ml	510 - 2040		1376,3	FE A) ELISA
Zonuline	58,36	ng/ml	< 55		77,03	FE A) ELISA

14. Conclusions

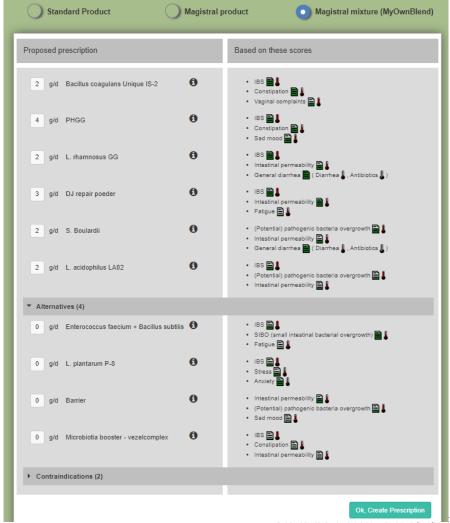
- SIBO: overgrowth of wrong bacteria in small intestines
- Most often due to failure of the two physiological barriers
- Strong overlap IBS and SIBO → SIBO subgroup of IBS
- Symptoms: bloating, bulging, tired/ill/hungry after eating, diarrhea/constipation/mixed, abdominal pain, sticky/fatty feces
- Breath tests can help with diagnosis
- Three-point treatment approach (causes, deficiencies, overgrowth)
- Microbiome treatment is good approach:
 - 1. Specific strains
 - 2. Use personalized approach because of comorbidities
 - 3. Preferment increases effect of targeted strains



Advice Aid: continuously improved & fast

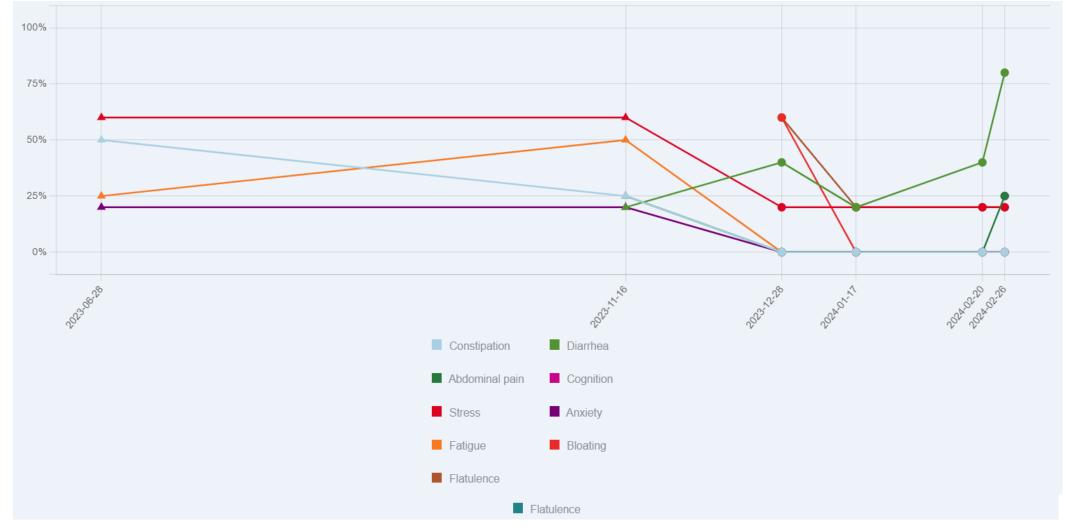


Improved processing of Lactose intolerance


Automatic processing of Biovis results

Advice Aid: flexibility of ingredient selection

Additional suggestions for potentially useful BBs



Bacillus coagulans Unique IS-2	-	2	gram/d	% 1	
PHGG	‡	4	gram/d	₽ , 1	
L. rhamnosus GG	^ *	2	gram/d	₽ , €	
DJ repair poeder	A	3	gram/d	₽ , 1	
S. Boulardii	A	2	gram/d	¾ ①	
L. acidophilus LA02	*	2	gram/d	9 , 0	
Alternatives					
Enterococcus faecium + Bacillus subtilis	Å.	0	gram/d	% 0	
L. plantarum P-8	A.	0	gram/d	1	
Barrier	^ *	0	gram/d	Advised	d based o
Microbiotia booster - vezelcomplex	* *	0	gram/d	IBS Stress	
				Anxiety	

Support your treatment

Tracking the complaints of clients

Ingredients are continuously expanded

Barrier

Bifido booster

DJ repair

IL-10 Immune balancer

TH1/TH2 Immune balancer

Pathogene reduction

Yeast reduction

Vitamin K2 booster

Butyraat generator

Microbiotia booster

Bacillus clausii UBBC-07

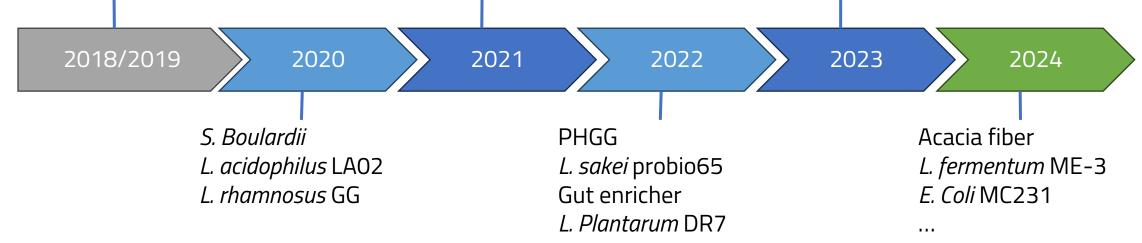
Bacillus coagulans Unique IS-2

Enterococcus faecium Rosell-26 +

Bacillus subtilis Rosell-179

2'-Fucosyllactose

L. plantarum P8


L. rhamnosus SP1

Akkermansia

Bifidobacterium lactis HN019

...

Vaginal suppositories

The contents of this document are property of Microbiome Center and are classified as confidential. Neither the document, nor parts thereof may be published, reproduced, copied, made public, or distributed without explicit written permission of Microbiome Center. This content shall not be considered medical advice and is provided for information purpose only. The content is exclusively intended for health care professionals.

New ingredient

Acacia fiber

Microbiome Center

Product information:

This prebiotic is derived from the gum of Acacia Senegal trees and consists of over 90% fibers (also known as gum arabic). Research on acacia fibers has been conducted for decades. In MyOwnBlend, a realistically achievable dosage of approximately 5g/day is assumed, but in most clinical studies, a daily dosage of 25g/day or higher has been used. Therefore, the evidence score for many indications is somewhat lower. With this caveat, there is reasonable evidence from an RCT for bloating (1). There is also evidence from several clinical, non-blinded studies for a beneficial effect on constipation (2-4, 18). One of these studies shows a trend of improvement in IBS-C, which can be seen as some degree of evidence for IBS (18). A number of RCTs show an effect on metabolic dysfunction/insulin resistance (including 5-7). Additionally, there is some evidence for an effect in ulcerative colitis (8), inconsistent evidence for an effect on diarrhea (9-11), and some evidence for an effect on periodontitis (12). Furthermore, there is some clinical and in vitro evidence that acacia fibers can increase butyrate production (13, 14). Finally, various open-label studies demonstrate anti-inflammatory effects (including 15-17).

Active components: Organic Acacia Senegal Fiber

Ingredients: Organic Acacia Senegal Fiber

Min:3 g/d, Max:20 g/d

References:

(1) The Effect of Gum Arabic (Acacia senegal) on Cardiovascular Risk Factors and
Gastrointestinal Symptoms in Adults at Risk of Metabolic Syndroms: A Randomized Clinical

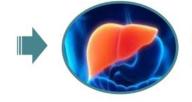
Added acacia fiber

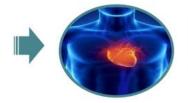
Near future new ingredient

In the process of adding *L. fermentum* ME-3

Strong resistance to gastric acidity, bile salts, adhesion to intestinal cells: ME-3 settles in the gut

Increases production of butyrate (anti-inflammatory short-chain fatty acid) Reduces gut epithelium permeability Protects against gut pathogens


Application : gut health


Stimulates glutathione production Stimulates PON1 production

Regulates blood glucose levels
Regulates blood lipids (TG, cholesterol)
Reduces oxLDL
Increases antioxidant capacity in plasma

Application : liver health, detoxification

Application: prevention of cardiovascular and metabolic disorders

Calender

Starters, intervision, Arbeitskreis

- Thursday 11 July 2024: Case discussions (NL)
- Wedsnesday 26 June: Arbeitskreis for MC starters (DE/EN)

Thematic webinars

- Tuesday 2 July 2024: Personalized Microbiome Therapy (DE)
- Monday 8 Jul 2024: Vaginal microbiome (EN)
- Monday 23 September 2024: SIBO part 2 (NL)
- Thursday 26 September 2024: SIBO part 2 (NL)

Thank you for your attention!

For more information, contact:

- 600+ practitioners
 - s Most up-to-date treatment
- 10k+ patients helped, with 72% positive effect
- Flexibility of choosing ingredients
- Treatment advice in minutes
- All comes in 1 packaging

