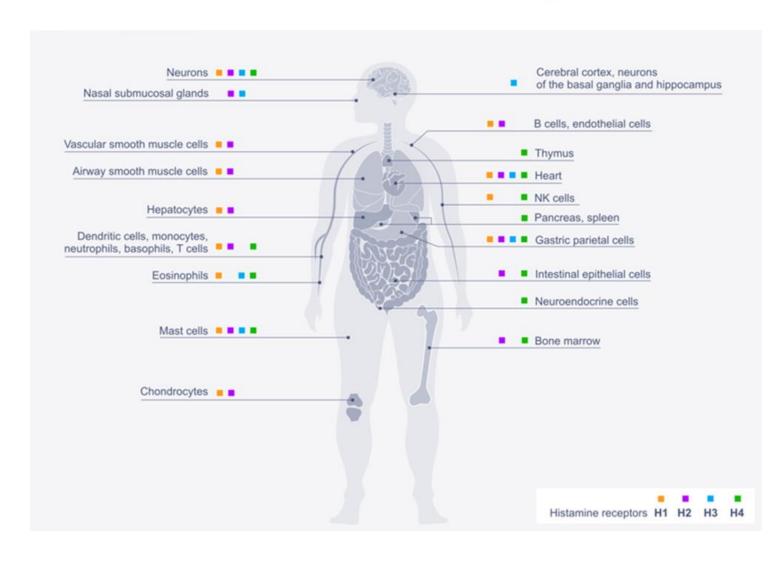


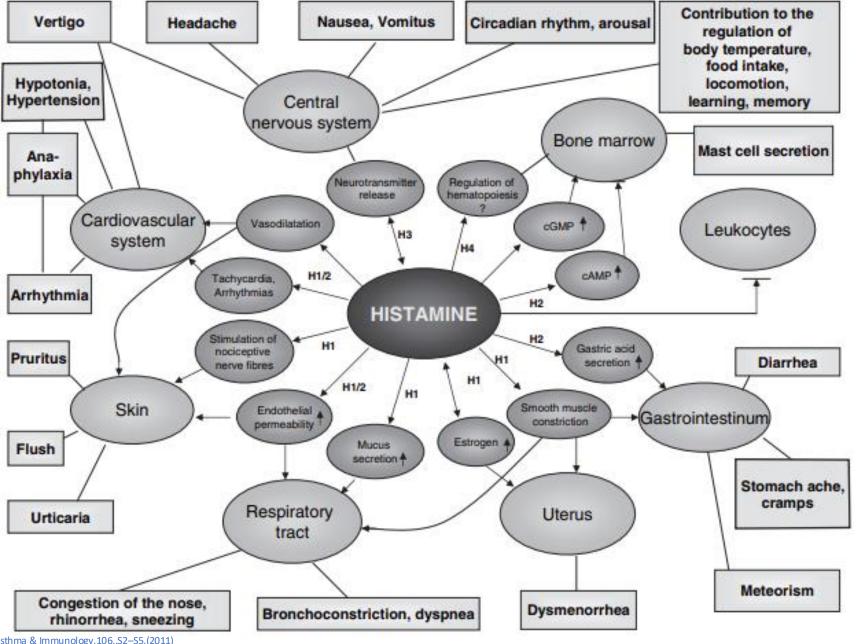
Evidence-based, personalized precision medicine

.... helping chronic patients more effectively, in less time.



Histamine

What is histamine?



- Discovery¹:
 - in 1932 discovered to play a major role in allergies
 - in 1940s first antihistamines
- Histamine is a biogenic amine¹:
 - Amine: chemical compound that originates from an amino acid
 - Other amines: dopamine, noradrenaline, tyramine
- Presence:
 - In nature ubiquitously present²
 - Many functions in humans^{2,3}: it is a neuro-immunoendocrine system mediator

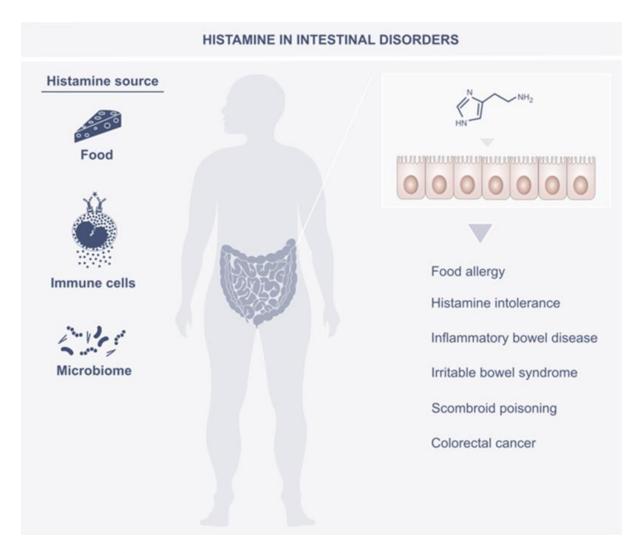
^{1.} Lieberman, P.Annals of Allergy, Asthma & Immunology.106, S2–S5. (2011)

Hrubisko, M. et al. Nutrients. 13,.2228. (2021)

^{1.} Lieberman, P.Annals of Allergy, Asthma & Immunology.106,.S2–S5.(2011)

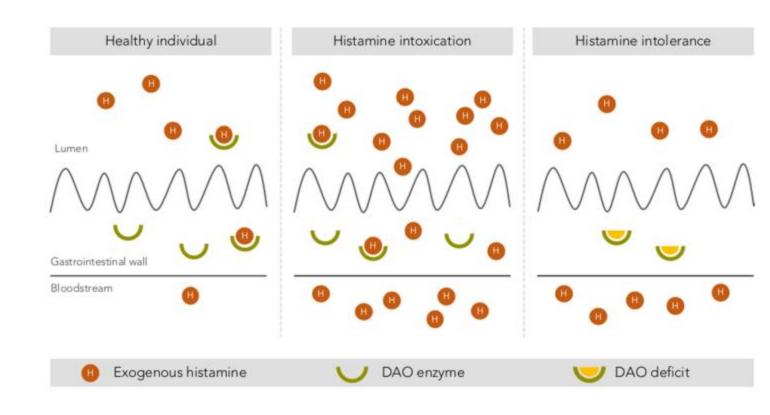
Microbiome

Biosynthesis

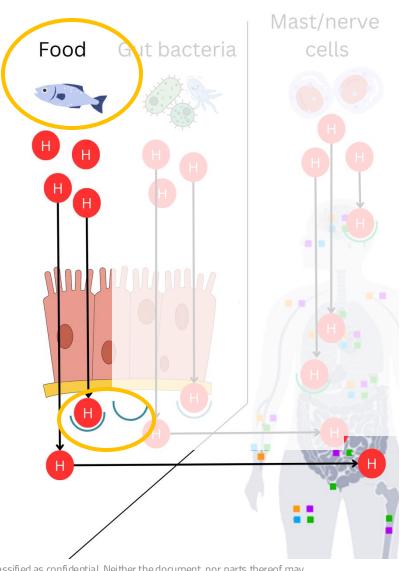

• Through decarboxylation from histidine (+ vit B6) -> histamine

- Short synthetic pathway in plants and animals: histamine is quickly available
- Histidine is found in almost all foods

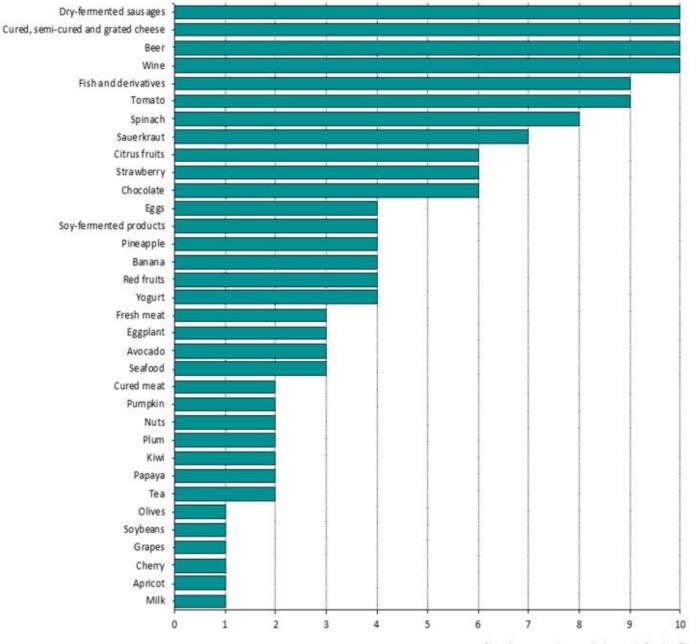
Sources of histamine


- 1) Food
- 2) Gut bacteria
- 3) Endogenous production:
 - Mast cells and other immune cells release histamine
 - Certain nerve cells

Histamine intolerance

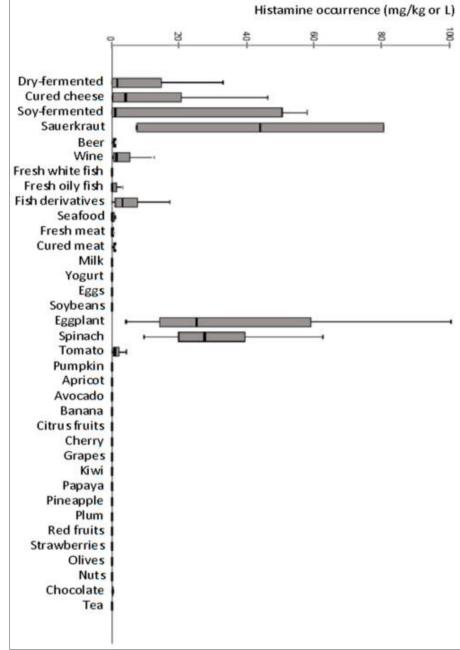

- Initially, illness due to excessive histamine was termed histamine intoxication
 - Spoiled foods, especially fish
- Histamine loads leading to symptoms vary substantially: response of individual plays large role, changing the definition to histamine intolerance
 - Important role in response for DAO
 - HI also considered a disorder due to reduced histaminedegrading capacity or lack of DAO

Histamine intolerance



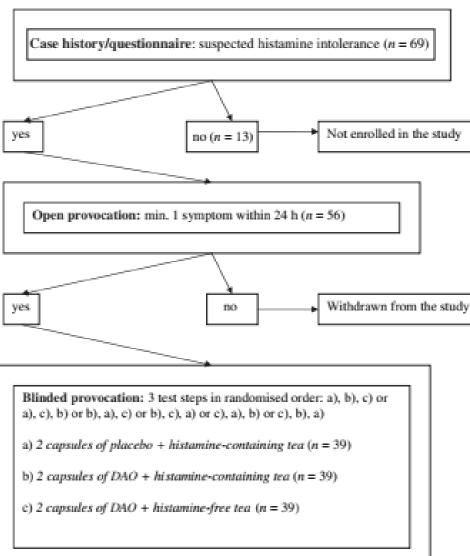
- Originally, the diagnosis "histamine intolerance" thus focused on¹:
 - Dietary histamine
 - Capacity to handle dietary histamine intake
- Typically, treatment for histamine intolerance consisted of 1:
 - Limit food intake of histamine
 - supplement DAO

Histamine diet

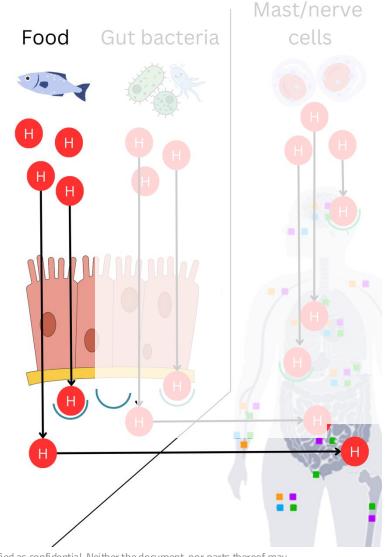

- Various low-histamine diets are being used
- A review found 10 diets described in scientific literature
- Interestingly, the overlap between these 10 diets was very small, with only 4 food items occurring in all 10 diets

Count of low-histamine diets excluding each foodstuff

Histamine diet


- The researchers also analyzed the actual histamine content in these foods, as bought in Spain¹.
- The vast majority of the excluded food items (68%) did **not** have high levels of histamine.
- High levels of other biogenic amines were found too:
 - Especially tyramine (dry-fermented products, cheese, fermented soy).
 - Also putrescine and cadaverine
 - May compete for the available DAO.
- NB: some food are said to trigger release of endogenous histamine, but no evidence of this effect is found

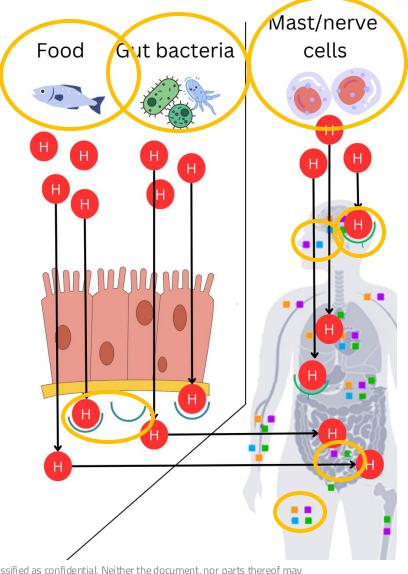
Histamine intolerance - lack of reproducibility


Table 2. Number (n) and percentage (%) of subjects with at least 1 positive reaction among blinded treatment groups

	п	n of positive reactions	% of positive reactions
DAO+ histamine-containing tea	39	30	76.9
DAO+ histamine-free tea	39	25	64.1
Placebo + histamine-containing tea	39	30	76.9

The term "histamine intolerance" is inaccurate

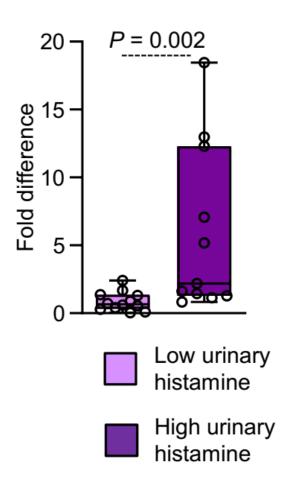
- Diet is not the only histamine source. Insufficient DAO cannot explain all symptoms
- Intolerance to a body's own substance essential for survival, would be incompatible with life.
 - Ever heard of adrenaline or testosterone intolerance?
 - Fructose, lactose, gluten intolerance refer to substances foreign to the body
- The classical term histamine intolerance is a misnomer and an oversimplification



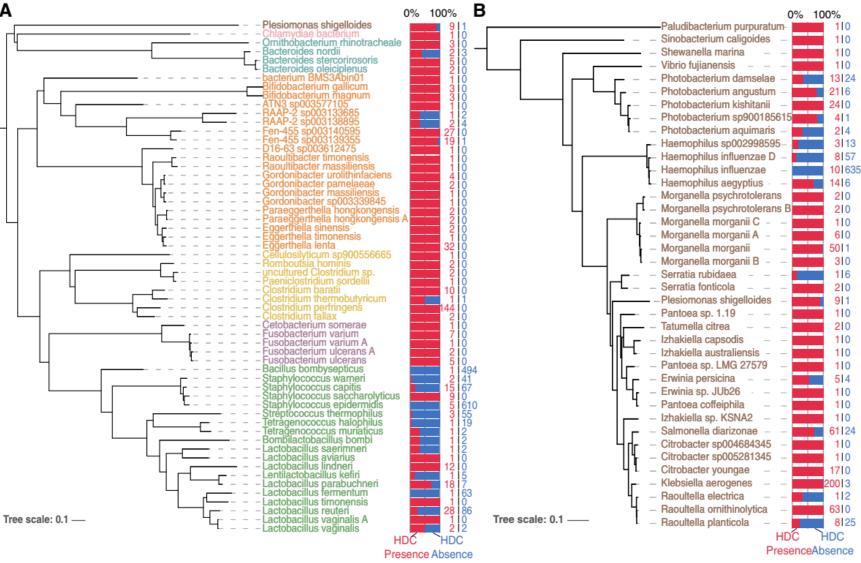
Factors playing a role

The overall response to histamine is determined by:

- Histamine exposure
 - Dietary histamine load
 - Bacterial production of histamine
 - Release of histamine by mast cells
 - Release of histamine by nerve cells
- Histamine action:
 - Expression of the four histamine receptor types (with different effects)
 - Blocking of specific receptor types
- Histamine breakdown:
 - Release of and breakdown by DAO
 - Breakdown by HNMT

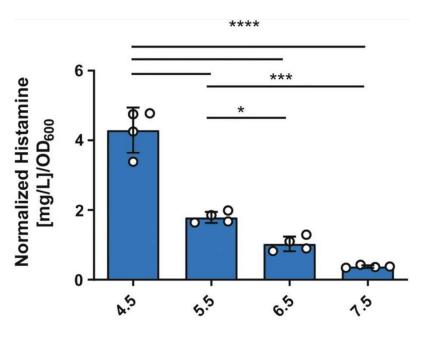


Typically, pathogenic bacteria are considered


- Histamine-producing bacteria can convert histidine into histamine, e.g.:
 - Serratia spp.
 - Morganella spp.
 - Klebsiella spp.
 - Citrobacter spp.
- Example: study found high levels of Klebsiella aerogenes in IBS patients

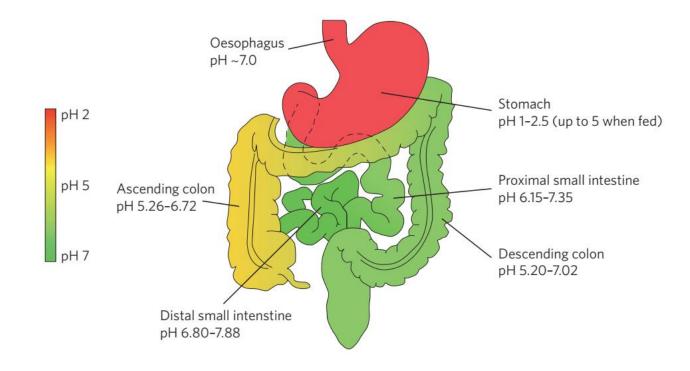
But ... various commensals can produce histamine

Almost 100 species out of 32,000 found to have histidine decarboxylase gene



Even if bacteria can produce histamine, that doesn't mean they will

pH is an important factor



Buffer pH

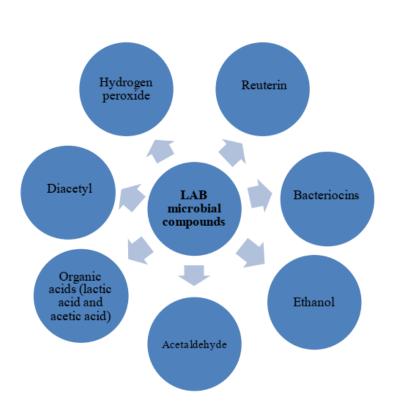
L. reuteri 6475 can produce histamine, but the amount depends heavily on the environment pH¹

Conversion of amino acids is a protective mechanism for bacteria in acid environment²

Nutrient availability has large impact

TABLE 3. Influence of glucose concentration and growth rate on the production of organic acids and amines by C. perfringens grown in continuous culture

					Ferm	entation p	products	b (mmo	l/g [dry	wt] of ce	ells)				
D (per h)	Culture conditions ^a		C	organic aci	ds					An	nines				% Amines produced
		A	В	L	S	Total	Me	Di	Pr	Ру	Bu	Pu	Ca	Total	produced
0.04	Glucose limited Amino acid limited	29.7 44.6	6.7 10.7	1.1 31.9	2.4 4.6	39.9 91.8	0.5 0.5	0.6 0.5	1.5 1.8	0.4 0.4	0.5 0.1	0.8 0.7	1.1 0.4	5.4 4.4	12.1 4.6
0.08	Glucose limited Amino acid limited	25.1 17.1	2.3 2.4	0.8 57.6	ND T	28.2 77.7	1.0 0.8	0.5 0.4	1.3 1.5	ND 0.3	0.9 1.1	0.8 0.6	0.8 0.3	5.3 4.0	15.8 4.9
0.16	Glucose limited Amino acid limited	14.2 11.3	1.4 1.8	2.1 51.3	T ND	17.7 64.4	1.2 0.7	0.3 0.3	3.1 1.3	0.3 0.3	0.2 0.4	1.3 ND	1.3 0.8	7.7 3.8	30.3 5.6


^a Cultures were grown on a glucose-limited medium containing 5.0 g of peptone and glucose per liter and on an amino acid limited medium containing 5.0 g of peptone per liter and 15 g of glucose per liter.

^b A, Acetate; B, butyrate; L, lactate; S, succinate; Me, methylamine; Di, dimethylamine; Pr, propylamine; Py, pyrrolidine; Bu, butylamine; Pu, putrescine; Ca, cadaverine. ND, Not detected; T, trace (<0.1 mmol/g [dry weight] of cells)

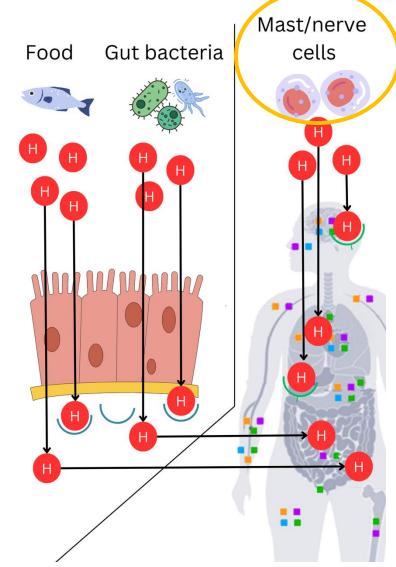
Beneficial species (e.g. Lactos) inhibit biogenic amine-producing pathogens

Table 4: Effect of lactic acid bacteria on the production of biogenic amines by foodborne pathogens

LAB	HIS	TYR	PUT	CAD	Unit	Pathogens	Broth/Food	References
Control	20.32	2167.25	638.68	48.37		E. coli	Tyrosine	
Pediococcus	11.16 ¹	351.13 ^S	192.07 ¹	27.12 ¹	mg/L		decarboxylase	Toy et al., 2015
acidophilus							broth	
Control	177.4	502.8	563.3	644.1	mg/kg	pathogen	Fermented	Xie et al., 2015
Lactobacillus plantarum	28.93 ^I	268.1 ^I	70.03 ^I	252.6 ^I	mg/kg		sausages	Ale et al., 2013
Control	0.00	0.82	35.33	185.87		S. Paratyphi A	Lysine	Kuley et al.,
Lactobacillus plantarum	1.10 ^S	8.02 ^S	31.10 ^I	433.98 ^S	mg/L		decarboxylase broth	2012
Control	673.9	7.5	-	-		L. monocytogenes	Ornithine	Özogul et al.,
Streptococcus	37.8 ¹	93.9 ^S	-	-	mg/L		decarboxylase	2015
thermophilus							broth	2013
Control	0.90	-	-	-	mg/100g		Tuna (Euthinus	Thiruneelakand
Lactobacillus plantarum	0.60 ^I	-	-	-	mg/100g	pathogen	affinis)	an et al., 2013
Control	0.57	2.52	10.05	0.78		S. aureus	Histidine	
Lactococcus lactis	5.79 ^s	41.13 ^S	61.95 ^S	7.60 ^S	mg/L		decarboxylase broth	Özogul, 2011
Control	-	-	207.3	228.2	m σ/ml	E faccium	Traditional Chinese	Xie et al., 2016
Lactobacillus plantarum	-	-	147.9 ^I	197.9 ^I	mg/ml	E. faecium	sausage	Ale et al., 2016
Control	-	-	138.59	235.95				Limsuwan et al.,
Lactobacillus sakei	-	-	82.23 ^I	224.74 ^I	mg/kg	pathogen	Fermented pork sausage	2007
Control	1.00	18.6	11.6	7.59			Spanish Type	
Leuconostoc	2.14 ^S	26.4 ^S	32.1 ^s	19.1 ^S	mg/kg	pathogen	Culture Collection	Peñas et al.,
mesenteroides	2.14	26.4	32.1	19.1			(CECT, Valencia, Spain)	2010

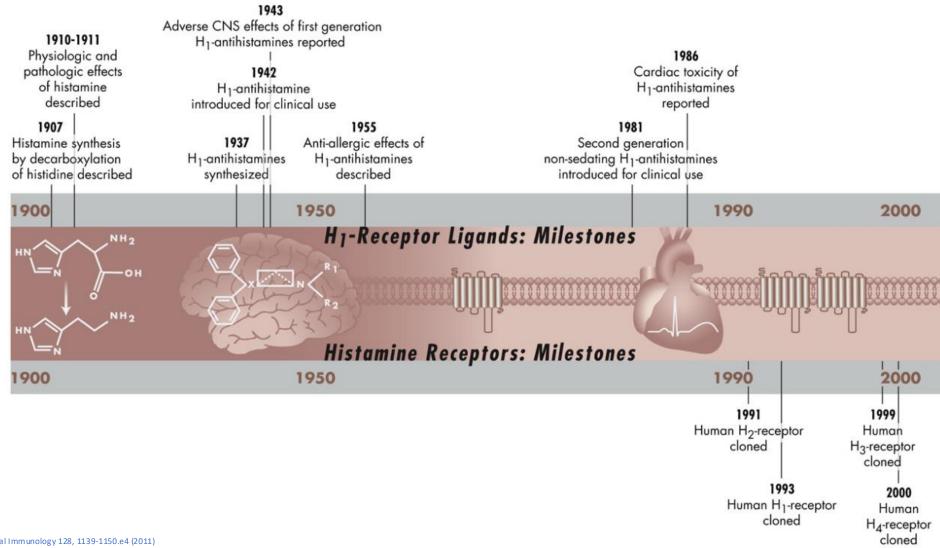
s: stimulation effect of LAB on pathogenic bacteria

I: Inhibition effect of LAB on pathogenic bacteria

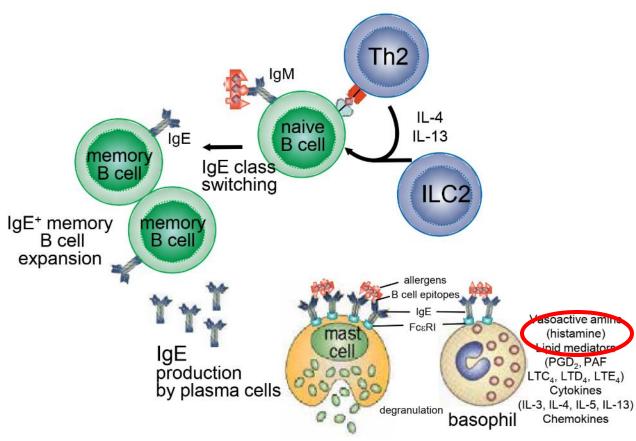

Questions

Factors playing a role

The overall response to histamine is determined by:


- Histamine exposure
 - Dietary histamine load
 - Bacterial production of histamine
 - Release of histamine by mast cells
 - Release of histamine by nerve cells
- Histamine action:
 - Expression of the four histamine receptor types (with different effects)
 - Blocking of specific receptor types
- Histamine breakdown:
 - Release of and breakdown by DAO
 - Breakdown by HNMT

Microbiome

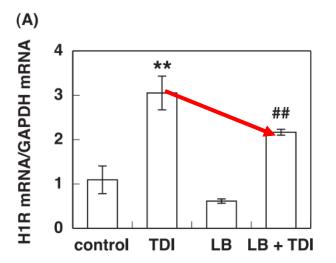

Antihistamines' long history of use in allergic diseases

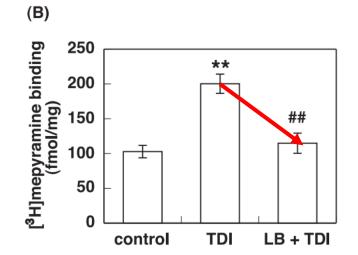
Role of histamine in allergic responses

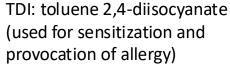
type 1 hypersensitivity

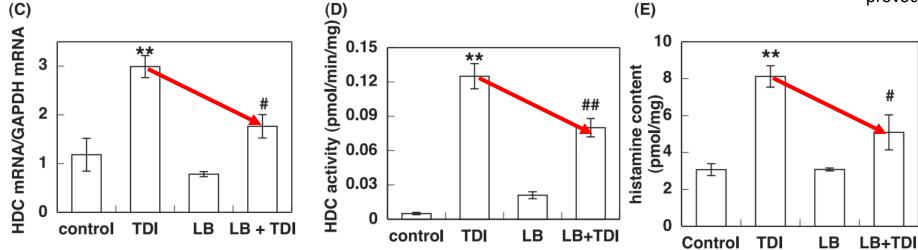
- The immunologic basis of allergic diseases has two phases¹:
 - Sensitization phase: sensitization and development of memory T and B cell responses and IgE production
 - Effector phase: new encounter with allergen causes cross-linking of IgE-FcɛRI complexes on sensitized basophils and mast cells → activated and release anaphylactogenic mediators responsible for the immediate hypersensitivity reaction.

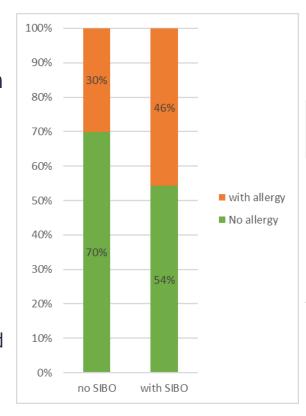
Probiotics beneficial in allergies




Meta-analyses show benefits of probiotics in:


- Prevention and treatment of atopic dermatitis in children¹
- Treatment of atopic dermatitis in adults on short and long term²
- Treatment of cow-milk allergy in children³
- Prevention of atopy and food hypersensitivity in children⁴
- Etc.


Specific probiotics lower histamine expression



The contents of this document are property of Microbiome Center and are classified as confidential. Neither the document, nor parts thereof may be published, reproduced, copied, made public, or distributed without explicit written permission of Microbiome Center. This content shall not be considered medical advice and is provided for information purpose only. The content is exclusively intended for health care professionals.

Link between allergies and SIBO

- Small intestinal bacterial overgrowth (SIBO) has a direct effect on the microbial interaction with the immune system.
- Microbiome Center suspects mechanistic link between SIBO and allergies:
 - Both SIBO and allergies show low levels immunogenic bacteria in fecal analyses.
 - Patients with SIBO more often have allergies.
 - Indeed, a small study found a high level of comorbidity 1.
- One cause of SIBO is failure of the forward barrier: the acidic stomach.
 - Less acidic stomach environment prevents adequate denaturing of folded proteins, associated with increased risk of food allergies^{2,3}.
 - PPI use in children is associated with increased prevalence of asthma^{4,5} or food allergies⁵.

Table 2. Frequency of allergies in subjects with and without SIBO and the odds ratio of allergic disease in patients with CAP for SIBO

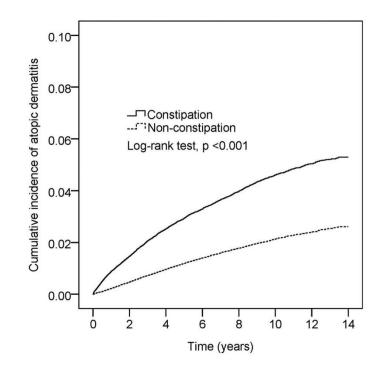
		;	SIBO		
Allergy	Negative n = 35	Positive n = 35	OR	95% IC	p-value
Any allergy	10 (28.6%)	25 (71.4%)	5.45	1.96-15.17	0.001
CMPA	0	9 (25.7%)	1.34	1.10-1.63	0.001
Food allergy	2 (5.7%)	7 (20%)	1.12	0.79-21.48	0.07
Rhinitis	8 (22%)	18 (51.4%)	3.57	1.27-10.01	0.01
Asthma	0	5 (14.3%)	1.16	1.01-1.36	0.02
Urticaria	1 (2.9%)	1 (2.9%)	1	0.06-16.64	0.75
Atopic					
dermatitis	3 (8.6%)	7 (20%)	2.66	0.62-11.30	0.15

SIBO: small intestinal bacterial overgrowth; CAP: chronic abdominal pain; CMPA: cow's milk protein allergy. Chi-squared test was performed.

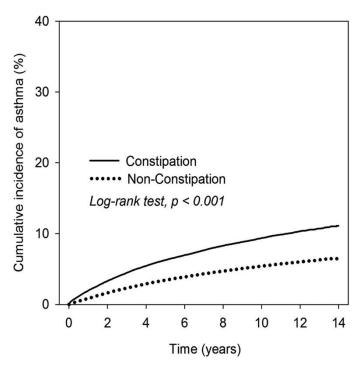
^{1.} Peña-Vélez, R. et al. Rev Esp Enferm Dig 111, 927–930 (2019)

^{2.} T. G. Guilliams, L. E. Drake, Integr Med (Encinitas). 19, 32–36 (2020)

Untersmayr, E. et al. J Allergy Clin Immunol 121, 1301–1308; quiz 1309–1310 (2008)


^{4.} Wang, Y.-H. et al. JAMA Pediatr 175, 394-403 (2021)

^{5.} Mitre, E. et al. JAMA Pediatr 172, e180315 (2018)


Link between allergies and SIBO

- The backward barrier may fail due to **constipation** leading to SIBO¹.
- Interestingly, food allergies, such as cows' milk allergy, are associated with constipation^{2,3}.
- Chicken or the egg:
 - Does allergy lead to constipation?
 - Does constipation lead to (SIBO leading to) allergy?
- Option 2 more likely:
 - Even non GI allergies such as atopic dermatitis⁴, asthma⁵ and allergic rhinitis⁶ are associated with constipation.

FIGURE 2 Kaplan–Meier curve of cumulative incidence proportion of atopic demattits in constipation group and nonconstipation group

FIGURE 2 Kaplan-Meier curve of cumulative incidence proportion of asthma in constipation and non-constipation groups

F. R. Ponziani, V. Gerardi, A. Gasbarrini, Expert Review of Gastroenterology & Hepatology. 10, 215–227 (2016).

Connor, F. et al. Nutrients 14, 1317 (2022)

^{3.} Miceli Sopo, S. et al. Int Arch Allergy Immunol 164, 40–45 (2014)

Huang, Y.-C. et al. Int J Clin Pract 75, e13691 (2021)

^{5.} Huang, Y.-C. et al. Int J Clin Pract 75, e14540 (2021)

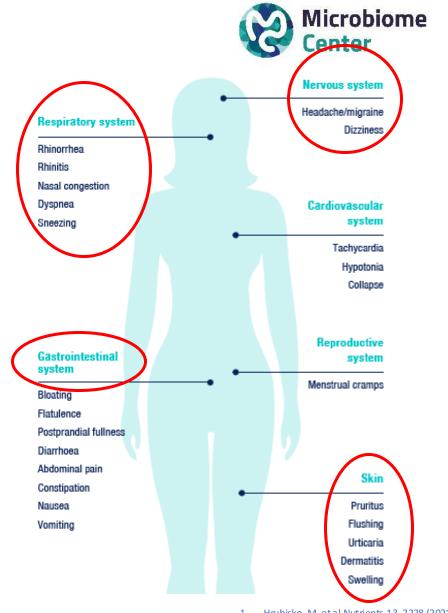
Link between allergies and SIBO

				Mean prevalence	Mean prevalence
Study or Subgroup	Mean prevalence	SE	Weight	IV, Random, 95%CI	IV, Random, 95% CI
Abdulkarim 2002	0.1428	0.09796	10.1%	0.14 [-0.05, 0.33]	
Chang 2011	0.48	0.1385	7.3%	0.48 [0.21, 0.75]	
Dewar 2012	0.09	0.0561	13.5%	0.09 [-0.02, 0.20]	 •
Ghoshal 2004	0.08333	0.1563	6.4%	0.08 [-0,22, 0.39]	
Lasa 2015	0.2	0.20242	4.5%	0.20 [-0.20, 0.60]	
Mooney 2014	0.2157	0.11288	9.0%	0.22 [-0.01, 0.44]	
Prizont 1970	0.5	0.4	1.5%	0.50 [-0.28, 1.28]	
Rana 2007	0.2069	0.08512	11.1%	0.21 [0.04, 0.37]	
Rana 2008	0.05	0.04775	14.2%	0.05 [-0.04, 0.14]	+-
Rubio Tapia 2009	0.09395	0.04685	14.2%	0.09 [0.00, 0.19]	-
Tursi 2003	0.6666	0.1217	8.4%	0.67 [0.43, 0.91]	
Total (95% CI)			100.0%	0.20 [0.10, 0.30]	•
Heterogeneity: Tau ² =	0.02; Chi ² = 32.14, d	df = 10 (P =	= 0.0004)	; I ² = 69%	
Test for overall effect:			,	-	1 -0.5 0 0.5 1

- From doctors in the Microbiome Center network we often hear comorbidity between food intolerances/allergies and SIBO.
 - Indeed, associations are found:
 - Lactose intolerance¹.
 - Celiac disease^{2,3} (figure).
 - There is some evidence that suggest that celiac disease patients who do not respond to gluten-free diet more often have SIBO⁴.
- 1. In patients with allergies, be aware of SIBO and vice versa.
- 2. The MC knowledge network helps to rapidly gain new insights

^{1.} Zhao, J. et al. Aliment Pharmacol Ther 31, 892–900 (2010)

^{2.} Losurdo, G. et al. Neurogastroenterol Motil 29, (2017)

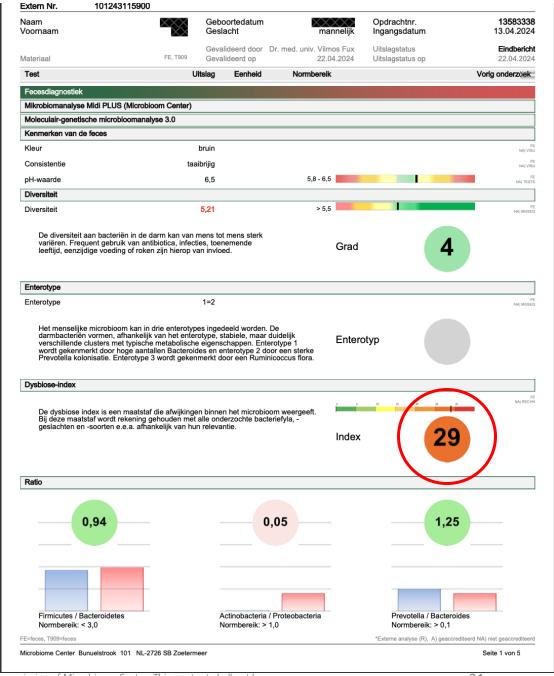

^{3.} Shah, A. et al. Journal of Gastroenterology and Hepatology n/a,

^{4.} Safi, M.-A. A. et al. Turk J Gastroenterol 31, 767–774 (2020)

Patient: 39-year-old male

Symptoms:


- Chronic abdominal issues since childhood
- Constantly swollen nasal mucosa, leading to restricted airflow
- Obstructive sleep apnea (OSAS)
- Chronic fatigue and reduced vitality
- Overweight (BMI 31)
- Increased muscle tension, especially in the neck (leading to headaches)
- Occasional **itching** on the back
- Moderate mental health issues, concentration problems, easily overstimulated


Breath Test Results:

Hydrogen SIBO

Microbiome results:

- Leaky gut
- Poor fat digestion
- Elevated inflammatory markers
- Unmeasurable high histamine
- Increased antigliadin antibodies

The contents of this document are property of Microbiome Center and are classified a

be published, reproduced, copied, made public, or distributed without explicit written permission of Microbiome Center. This content shall not be considered medical advice and is provided for information purpose only. The content is exclusively intended for health care professionals.

laam	(XXXXXX Ga	slacht	man	neliik	Opdrachtnr. Ingangsdatum	1358333 13.04.202	
Test	Uitslag	Eenheid	Normbereik		gagoaata	Vorig onderzoek	
Indeling van bacteriën naar fylu							
Actinobacteria	0,2	%	1,5 - 7			NA) MGS	
Bacteroidetes	49,4	%	20 - 45			NA) MGS	
Firmicutes	46,4	%	50 - 75			NA) MGS	
Fusobacteria	0,0	%	0,0 - 1,0			NA) MGS	
Proteobacteria	4,0	%	1,0 - 3,5			NA; MGS	
Verrucomicrobia	0,0	%	1,5 - 5,0			NA: MGE	
Overige	0,0	%				NAI MOS	
Metaboloom (stofwisselingsact	ieve bacteriegroepen)					NA; MGS	
Secundaire galzuren	21,9	%					
TMA / TMAO	-41,5	%					
Indoxylsulfaat	-50,0	%					
Fenolen	-45,5	%					
		%					
Ammoniak	66,2	,-					
Histamine	-50,0	%					
Equol	-48,0	%					
Beta-glucuronidasen	-49,4	%					
Indeling van bacteriën naar fylu	ım met de belangrijkste bac	teriegeslachten	en -soorten				
Actinobacteria				_			
Bifidobacterium	1,4 x 10^9	KVE/g feces	> 1,0 x 10^10			NA) MGS	
Bacteroidetes				_			
Bacteroides	2,0 x 10^11		> 5,0 x10^10			NA] MGS	
Prevotella	2,5 x 10^11		> 1,0 x 10^10			NA; MGS	
Prevotella	copri 24	%				NA; MGS	
Firmicutes							
Butyraatproducerende bacterië							
Totaal kiemgetal	1,6 x 10^11	KVE/g feces	> 2,4 x 10^11	7		NA; MGS	
Faecalibacterium prausnitzii	7,6 x 10^10	KVE/g feces	>1,0 x10^11			NA) MGS	
Eubacterium rectale	1,5 x 10^10	KVF/a feces	> 2,0 x 10^10				
	.,	ICV Eng Iccco	> 2,0 x 10^10			NA) MGS	
Eubacterium hallii		KVE/g feces	> 1,5 x 10^10	F			
Eubacterium hallii Roseburia spp.		KVE/g feces			- 1	NA) MGS	
	7,4 x 10 ⁹ 4,6 x 10 ¹ 0	KVE/g feces	> 1,5 x 10^10	E	i i	NA) MGS NA) MGS	
Roseburia spp.	7,4 x 10^9 4,6 x 10^10 3,2 x 10^9	KVE/g feces KVE/g feces	> 1,5 x 10^10 > 3,0 x10^10	E	' '	NA; MGS NA; MGS	
Roseburia spp. Ruminococcus spp.	7,4 x 10 ⁴ 9 4,6 x 10 ⁴ 10 3,2 x 10 ⁴ 9 9,5 x 10 ⁴ 9	KVE/g feces KVE/g feces KVE/g feces	> 1,5 x 10^10 > 3,0 x10^10 > 5,0 x 10^10	ŧ	• •	NA) MGS NA) MGS NA) MGS NA) MGS	
Roseburia spp. Ruminococcus spp. Coprococcus spp.	7,4 x 10 ⁴ 9 4,6 x 10 ⁴ 10 3,2 x 10 ⁴ 9 9,5 x 10 ⁴ 9	KVE/g feces KVE/g feces KVE/g feces KVE/g feces	> 1,5 x 10^10 > 3,0 x10^10 > 5,0 x 10^10 > 5,0 x 10^10	ŧ		NA) MGS NA) MGS NA) MGS NA) MGS	
Roseburia spp. Ruminococcus spp. Coprococcus spp. Butyrivibrio spp.	7,4 x 10^9 4,6 x 10^10 3,2 x 10^9 9,5 x 10^9 4,9 x 10^8	KVE/g feces KVE/g feces KVE/g feces KVE/g feces	> 1,5 x 10^10 > 3,0 x10^10 > 5,0 x 10^10 > 5,0 x 10^10	ŧ		NA; MGB NA; MGB NA; MGB NA; MGB	
Roseburia spp. Ruminococcus spp. Coprococcus spp. Butyrivibrio spp. Clostridia	7,4 x 10^9 4,6 x 10^10 3,2 x 10^9 9,5 x 10^9 4,9 x 10^8	KVE/g feces KVE/g feces KVE/g feces KVE/g feces KVE/g feces	> 1,5 x 10^10 > 3,0 x10^10 > 5,0 x 10^10 > 5,0 x 10^10 > 1,5 x 10^10	ŧ		NA, MIGH NA, MIGH NA, MIGH NA, MIGH NA, MIGH NA, MIGH NA, MIGH	
Roseburia spp. Ruminococcus spp. Coprococcus spp. Butyrivibrio spp. Clostridia Totaal kiemgetal	7,4 x 10^9 4,6 x 10^10 3,2 x 10^9 9,5 x 10^9 4,9 x 10^8	KVE/g feces KVE/g feces KVE/g feces KVE/g feces KVE/g feces KVE/g feces	> 1,5 x 10^10 > 3,0 x10^10 > 5,0 x 10^10 > 5,0 x 10^10 > 1,5 x 10^10 < 4,0 x 10^9	ŧ		NA, MIGH NA, MIGH NA, MIGH NA, MIGH NA, MIGH NA, MIGH NA, MIGH	
Roseburia spp. Ruminococcus spp. Coprococcus spp. Butyrivibrio spp. Clostridia Totaal kiemgetal Clostridia Cluster I	7,4 x 10^9 4,6 x 10^10 3,2 x 10^9 9,5 x 10^9 4,9 x 10^8 3,3 x 10^8 1,0 x 10^5	KVE/g feces KVE/g feces KVE/g feces KVE/g feces KVE/g feces KVE/g feces	> 1,5 x 10^10 > 3,0 x10^10 > 5,0 x 10^10 > 5,0 x 10^10 > 1,5 x 10^10 < 4,0 x 10^9	ŧ		NA, MIGH NA, MIGH NA, MIGH NA, MIGH NA, MIGH NA, MIGH NA, MIGH	
Roseburia spp. Ruminococcus spp. Coprococcus spp. Butyrivibrio spp. Clostridia Totaal kiemgetal Clostridia Cluster I Fusobacteria	7,4 x 10^9 4,6 x 10^10 3,2 x 10^9 9,5 x 10^9 4,9 x 10^8 3,3 x 10^8 1,0 x 10^5	KVE/g feces	> 1,5 x 10^10 > 3,0 x10^10 > 5,0 x 10^10 > 5,0 x 10^10 > 5,0 x 10^10 > 1,5 x 10^10 < 4,0 x 10^9 < 2,0 x 10^9	ŧ		NA, MIGH NA, MIGH NA, MIGH NA, MIGH NA, MIGH NA, MIGH NA, MIGH	
Roseburia spp. Ruminococcus spp. Coprococcus spp. Butyrivibrio spp. Clostridia Totaal kiemgetal Clostridia Cluster I Fusobacteria Fusobacteria	7,4 × 10^9 4,6 × 10^10 3,2 × 10^9 9,5 × 10^9 4,9 × 10^8 1,0 × 10^5	KVE/g feces	> 1,5 x 10^10 > 3,0 x10^10 > 5,0 x 10^10 > 5,0 x 10^10 > 5,0 x 10^10 > 1,5 x 10^10 < 4,0 x 10^9 < 2,0 x 10^9			NA, MGG	
Roseburia spp. Ruminococcus spp. Coprococcus spp. Butyrivibrio spp. Clostridia Totaal kiemgetal Clostridia Cluster I Fusobacteria Fusobacterium Verrucomicrobia	7,4 × 10^9 4,6 × 10^10 3,2 × 10^9 9,5 × 10^9 4,9 × 10^8 1,0 × 10^5	KVE/g feces	> 1,5 x 10^10 > 3,0 x10^10 > 5,0 x 10^10 > 5,0 x 10^10 > 5,0 x 10^10 > 1,5 x 10^10 < 4,0 x 10^9 < 2,0 x 10^7			NA, MIGH NA, MIGH NA, MIGH NA, MIGH NA, MIGH NA, MIGH NA, MIGH	
Roseburia spp. Ruminococcus spp. Coprococcus spp. Butyrivibrio spp. Clostridia Totaal kiemgetal Clostridia Cluster I Fusobacteria Fusobacterium Verrucomicrobia Akkermansia muciniphila	7,4 × 10^9 4,6 × 10^10 3,2 × 10^9 9,5 × 10^9 4,9 × 10^8 1,0 × 10^7	KVE/g feces	> 1,5 x 10^10 > 3,0 x10^10 > 5,0 x 10^10 > 5,0 x 10^10 > 5,0 x 10^10 > 1,5 x 10^10 < 4,0 x 10^9 < 2,0 x 10^7			NA; MGS	

laam	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	slacht	mannelijk	Opdrachtnr. Ingangsdatum	135833 13.04.20
Test	Uitslag	Eenheid	Normbereik	mgangsdatum	Vorig onderzoe
Acinetobacter spp.	< 1,0 x 10^5		< 1,0 x 10^6		
Proteus spp.	< 1,0 x 10^5		< 1,0 x 10^6		NA) M
Klebsiella spp.		KVE/g feces	< 1,0 x 10^7		NA) MI
Enterobacter spp.	< 1,0 x 10^5	-	< 1,0 x 10^6		NA; MI
	< 1,0 x 10 5		< 1,0 x 10^7		NA) M
Serratia spp.			< 1,0 x 10 7		NA) M
Hafnia spp.	< 1,0 x 10^5		< 1,0 x 10 ⁻⁶		NA) M
Morganella spp.	< 1,0 x 10^5				NA; M
Citrobacter spp.		KVE/g feces	< 5,0 x 10^8		NA) M
Pseudomonas spp.	< 1,0 x 10^5		< 5,0 x 10^7		NA) M
Providencia spp.	< 1,0 x 10^5	KVE/g feces	< 5,0 x 10^7		NA; M
H2S-vorming					_
Sulfaatreducerende bacteriën (SRB)		KVE/g feces	< 2,5 x 10^9		NA; M
Desulfovibrio piger	< 1,0 x 10^5		< 1,0 x 10^9		NA; M
Desulfomonas pigra	< 1,0 x 10^5		< 1,0 x 10^9		NA) M
Bilophila wadsworthii	< 1,0 x 10^5	KVE/g feces	< 2,0 x 10^9		NA) M
Immunogeniciteit / mucine vorming					
Immunogeen werkende bacteriën					
Escherichia coli	8,6 x 10^5	KVE/g feces	10^6 - 10^7		NA) M
Enterococcus spp.	1,43 x 10^6	KVE/g feces	10^6 - 10^7		NA; M
Lactobacillus spp.	4,8 x 10^4	KVE/g feces	10^5 - 10^7		NA) M
Mucine vorming / slijmvliesbarrière					
Akkermansia muciniphila	1,0 x 10^7	KVE/g feces	> 5,0 x 10^9		NA) M
Faecalibacterium prausnitzii	7,6 x 10^10	KVE/g feces	>1,0 x10^11		NA) M
Archaea					
Methanogenen		10.55	< 5,0 x 10^8		_
Methanobrevibacter spp.	< 1,0 x 10^5	TVL/g 10000	Opmerking: Het nieuv matrix maken een no vooral bij grampositie	verschuivingen in de normbereik	ogelijk,
Mycobioom: relevante gisten			TTO VIEGOTI O TION	stilling theo to headern.	
Candida albicans (CA)	<1,0 x 10^3	KVE/g feces	<1,0 x 10^3		
Candida krusei (CK)	<1,0 x 10^3		< 1,0 x 10^3		NA)
Candida glabrata (CG)	<1,0 x 10^3		< 1,0 x 10^3		NA)
Candida dubliniensis (CD)	<1,0 x 10 °0		< 1,0 x 10^3		NA)
Candida parapsilosis (CP)	<1,0 x 10 °0		< 1,0 x 10^3		NA)
	<1,0 x 10 3	-	< 1,0 x 10 3		NA)
Candida tropicalis (CTp)				_	NA)
Candida lusitaniae (CL)	<1,0 x 10^3	r.v.e/g reces	< 1,0 x 10^3		NA)
Parasieten Pathohionten					
Pathobionten Blastocystis hominis	negatief		negatief		
Diagrocysus normins			negatief		A) N
Diantamagha fragili-	negatief		negatier		A) h
Dientamoeba fragilis					
Pathogene darmprotozoa			negation		
	negatief negatief		negatief negatief		A) M

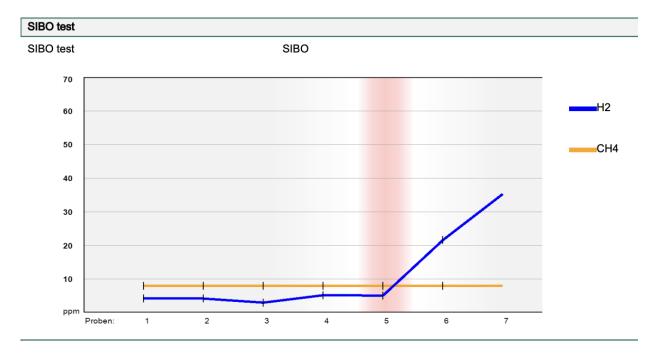
*Externe analyse (R), A) geaccrediteerd NA) niet geaccrediteerd

Seite 3 von 5

Naam	XXXXX	$\times\!\!\times\!\!\times\!\!\times$	$\times\!\!\times\!\!\times\!\!\times$	Opdrachtnr.	13583338
***************************************	XX Gesla	acht	mannelijk	Ingangsdatum	13.04.2024
Test	Uitslag	Eenheid	Normbereik		Vorig onderzoek
Cryptosporidium spp.	negatief		negatief		FE A) MOLEK
Cyclospora cayetanensis	negatief		negatief		FE. A) MOLEK
Vertering					.,
Vetgehalte	5,60	g/100g	< 3,5		FE NA) PHOT
Stikstofgehalte	0,90	g/100g	< 1,0		FE NA) PHOT
Suikergehalte	3,00	g/100g	< 2,5		FE. NA) PHOT
Watergehalte	72,80	g/100g	75 - 85		FE NA) PHOT
Extra parameter(s)					NA) PROT
Calprotectine	27,70	mg/l	< 50		FE. A) ELISA
Alfa-1-antitripsine	85,6	mg/dl	< 27,5		FE A) ELISA
Secretoir Immunoglobuline A	>7500,0	μg/ml	510 - 2040		FE
Zonuline	80,75	ng/ml	< 55		A) ELISA FE
Histamine in feces	>24000,0	ng/ml	< 959		A) ELISA T909
Speciale gastro-enterologische diagnostiek	21000 0	J.			A) ELISA
Gluten-sensitieve enteropathie / coeliakie					
Anti-gliadine antilichamen in feces	146,13	U/I	< 100		FE
Anti-transglutaminase antistoffen in feces	<50,00	U/I	< 100		A) ELISA FE
	,				A) ELISA

Treatment:

- Dietary Adjustments:
 - Remove gluten and sugars, increase protein intake
- 2-week Elemental Diet, followed by:
- Interventions:
 - MyOwnBlend
 - Metadigest Lipid (enzymes)
 - 2-Prepare, borage oil, and A-mulsion (for gut healing)


Element	Dagdosering	Bedrag	Туре	Link
MyOwnBlend, magi strale bereiding 2 m aanden (oraal)		€ 275,0 0	Persoonlijke Berei ding	
PHGG	4		Magistral compou	
Bacillus clausii UB BC-07	1		Magistral compou	
2'-Fucosyllactose	3		Magistral compou	
Enterococcus faeci um + Bacillus subtil is	2		Magistral compou	
Lactiplantibacillus plantarum DR7	1		Magistral compou	
Akkermansia mucin iphila, gepasteurise erd	2		Magistral compou	
S. Boulardii	2		Magistral compou	

Results:

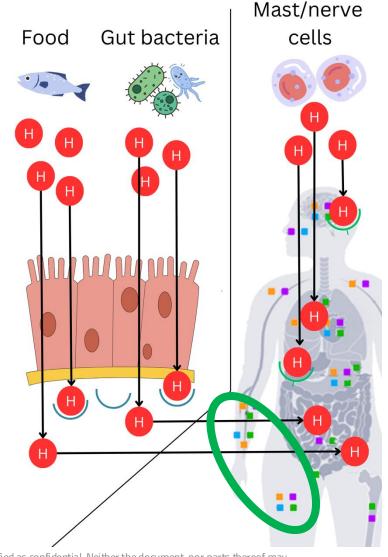
- Hydrogen SIBO resolved
- Histamine fully normalized
- Most symptoms (nasal mucosa issues, fatigue, headaches, and abdominal pain) largely disappeared
- Lost over 10 kg

01-07-2024

01-07-2024

Test	Uitslag	Eenheid	Normbereik	Vorig onderz
Fecesdiagnostiek				
Extra parameter(s)				
Histamine in feces	<200.0	ng/ml	< 959	>24000,0

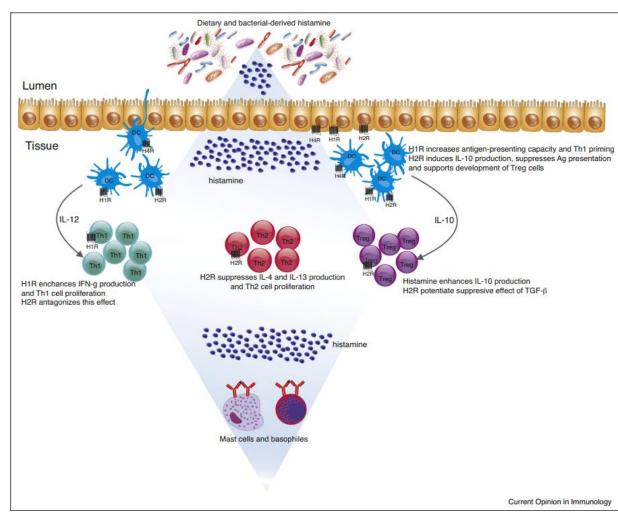
Questions



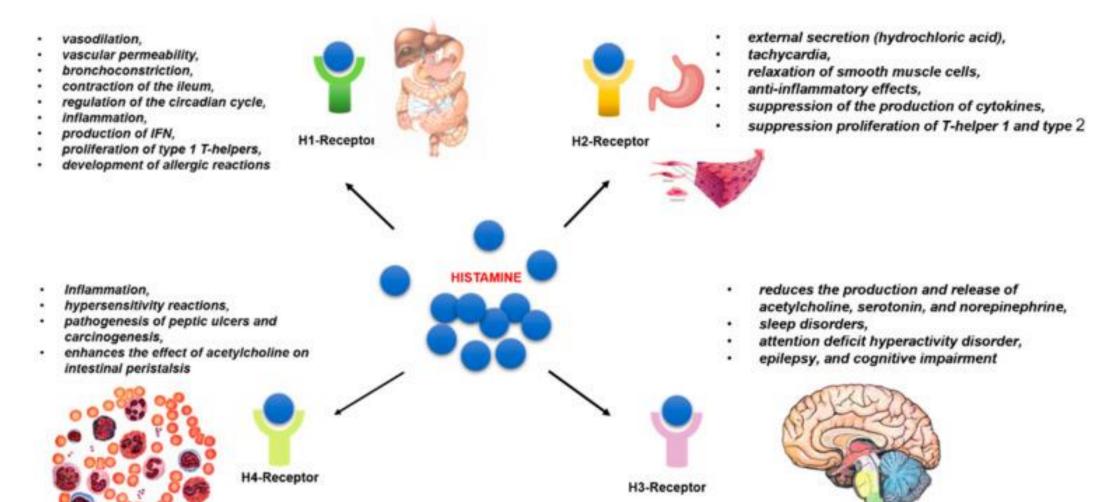
Factors playing a role

The overall response to histamine is determined by:

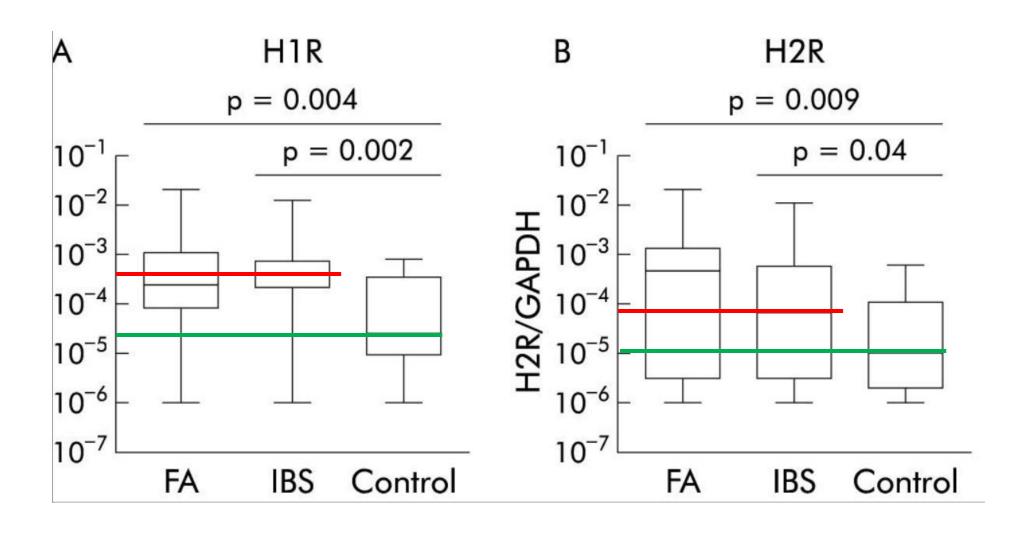
- Histamine exposure
 - Dietary histamine load
 - Bacterial production of histamine
 - Release of histamine by mast cells
 - Release of histamine by nerve cells
- Histamine action:
 - Expression of the four histamine receptor types (with different effects)
 - Blocking of specific receptor types
- Histamine breakdown:
 - Release of and breakdown by DAO
 - Breakdown by HNMT

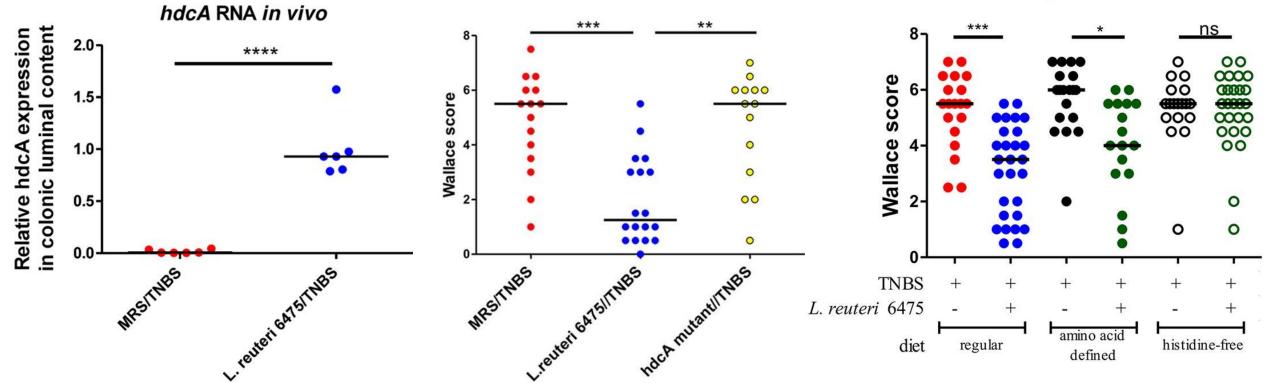


Histamine is not only pro-inflammatory Effects are regulated by receptor expression


- H1R: classical immediate hypersensitivity responses:
 - smooth muscle cell contraction
 - increased vascular endothelial cell permeability
 - synthesis of platelet activating factor
 - release of von Willebrand factor and nitric oxide.
- H2R: antagonizes H1R effects:
 - relaxation of smooth muscle cells
 - anti-inflammatory

Overview of histamine receptors.							
	H1R	H2R	H3R	H4R			
Chromosomal location	3q25	5q35.2	20q13.33	18q11.2			
G protein coupling	Gαq	Gαs	Gαi/0	Gαi/0			
Intracellular signal transduction Tissue location	Activates PLC, PKC and calcium release Ubiquitous	Increases cAMP and activates PKA Ubiquitous	Inhibits cAMP, activates MAPK, PKB and calcium release Neurons	Inhibits cAMP, activates MAPK, PKB and calcium release Bone marrow, hematopoietic cells,			
				keratinocytes			

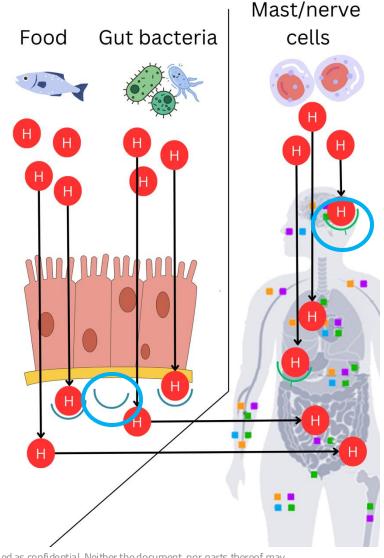

Histamine is not only pro-inflammatory Effects are regulated by receptor expression


Increased H1R and H2R expression in IBS pts

Probiotic histamine can lower inflammation

- Mouse model of colitis
- L. reuteri 6475 induces histidine decarboxylase expression
- L. reuteri 6475 lower inflammation (Wallace score), but mutants do not
- Histidine must be present in diet for the effect
- Effect due to binding to H2R
- Also involved: compounds suppressing H1R pathway

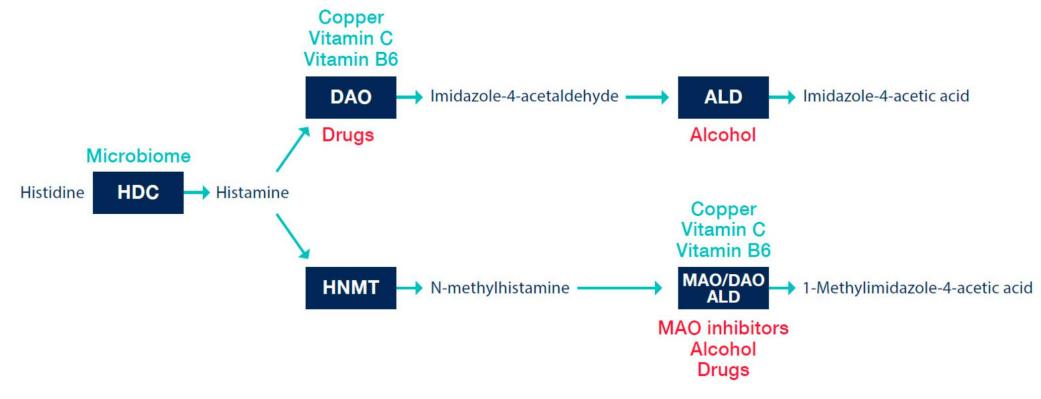
Questions



Factors playing a role

The overall response to histamine is determined by:

- Histamine exposure
 - Dietary histamine load
 - Bacterial production of histamine
 - Release of histamine by mast cells
 - Release of histamine by nerve cells
- Histamine action:
 - Expression of the four histamine receptor types (with different effects)
 - Blocking of specific receptor types
- Histamine breakdown:
 - Release of and breakdown by DAO
 - Breakdown by HNMT



Histamine breakdown

Two degradation pathways^{1,2}:

- Diamine oxidase (DAO) → excreted (extracellular); gut, placenta, kidney, thymus, seminal plasma
- histamine-N-methyltransferase (HNMT) → intracellular; brain, liver, spleen, respiratory, etc.

Histamine breakdown

- DAO needs copper, Vit B6, Vit C, zinc, manganese
- HNMT requires: methionine, magnesium, manganese, iron, coenzyme Q10, vit B2, vit B6, vit B12, folate, vit B3
- Without these substances, sufficient histamine degradation cannot take place.
- Many patients have a deficiency of at least 2 cofactors

Histamine breakdown

Drugs that block DAO:

- N-Acetylcysteine (cough expectorant)
- Amitryptiline (antidepressant)
- ASS (aspirine)
- Metamizole (analgesic and antipyretic)
- Diazepam (benzodiazepine)
- Prilocaine (local anaesthetics)

Other:

Alcohol

Drugs that block HNMT:

- Chloroquin (antimalarial-drug)
- Tacrine (Alzheimer's disease)
- Diphenhydramin (H1-blocker)

DAO and histamine intolerance diagnosis

Diagnosis of histamine intolerance: solution is sought in the wrong place

Classic diagnosis:

- Diamine oxidase normal value: >10 unit/ml (U/ml)
- Histamine intolerance : <10 U/ml (10-15 U/ml: consider clinical signs)

But:

- Detection of high histamine levels in the gut, blood or urine do not always correlate with low DAO activity
- Patients with low DAO activity do not always automatically have symptoms of histamine intolerance
- Determination of DAO activity alone is not sufficient

Diagnosis of histamine intolerance: solution is sought in the wrong place

....and:

- High histamine levels in stool/blood can have multiple causes
- Especially inflammation of gut epithelium is problematic
 - Inflammation is accompanied by endogenous histamine release
 - Leads to less DAO release, which in turn leads to food intolerances (e.g. lactose intolerance)

The longer intestinal mucosa is inflamed, the less DAO can be produced. As a result, more histamine enters the bloodstream.

A low DAO level is almost always the result of chronic intestinal inflammation and not the primary problem.

Diagnostic pathway

- 1st: Perform a microbiome test to rule out gut dysbiosis
 - Optionally: screen for histamine in the stool
- 2nd: Test for histamine in heparin blood, histamine in 2nd morning urine or 24-hour collection urine, methylhistamine in 2nd morning urine or 24-hour collection urine.
- If one of these is conspicuous, an extended diagnosis could follow: DAO, HNMT

Determining the DAO as the first parameter often leads in the wrong direction

Questions

Histamine and probiotics: is it about histamineproducing capability?

- Many brands advertise with probiotics for histamine intolerance
- Often only about absence of histamine-producing capability
- But should we focus on that?
 - 1. Various commensals can produce histamine
 - 2. Histamine can have antiinflammatory effects
 - 3. Even if bacteria can produce histamine, that doesn't mean they will
 - Microbes can induce or suppress endogenous histamine release

So it is complex, how to treat then?

It's impossible to know source of histamine (food, bacteria, mast cells), or to know source of complaints (H1R vs H2R, impaired DAO, excessive histamine). How to treat then?

Step 1: Treat the gut ecology as a whole via personalized microbiome treatment

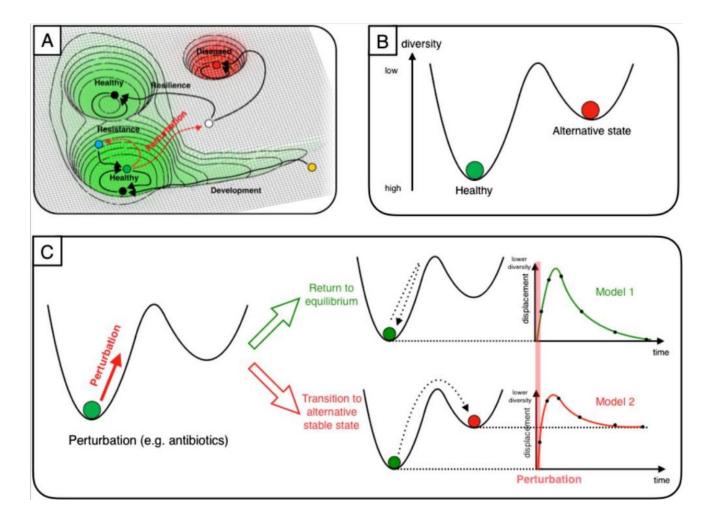
- Solves leaky gut
- · Reduces inflammation
- Lowers expression of HDC/histamine production of pathogens/commensals
- Modulates expression of histamine 1 and 2 receptors
- Removes causes like SIBO

So it is complex, how to treat then?

It's impossible to know source of histamine (food, bacteria, mast cells), or to know source of complaints (H1R vs H2R, impaired DAO, excessive histamine). How to treat then?

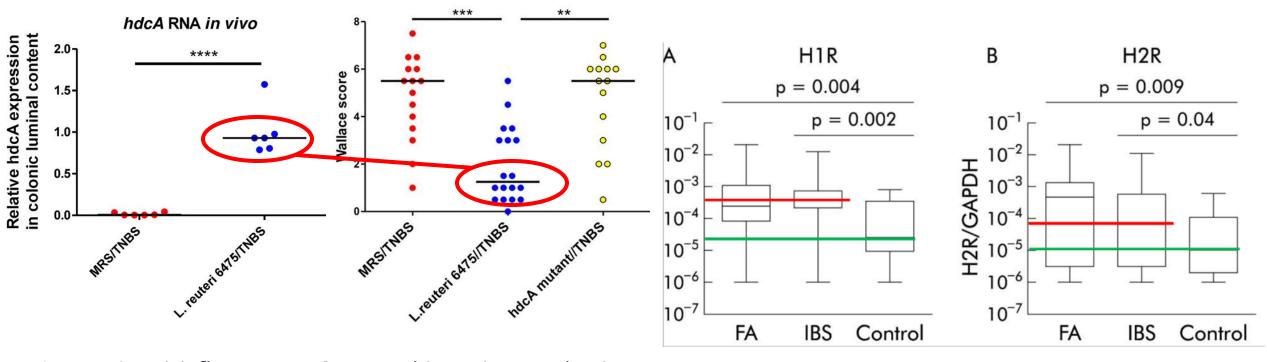
Step 2: take diet into account

- Use unprocessed whole foods:
 - Vegetables, fresh fish, meat, fruit, nuts, seeds, herbs, water, tea, coffee
- Optimize the gut environment by making it less proteolytic:
 - Sufficient fibers, carbs, and fats
 - Promote lactate, acetate, butyrate, and other (fatty) acid production by stimulating lactobacilli, SCFA generators
- Temporarily avoid foods that trigger symptoms (e.g. lactose, fructose, gluten, etc.)
- Limit eating moments (e.g. intermittent fasting)
- Sufficient DAO cofactors (copper, B6, C, etc.)


(Optional step 3: if very severe)

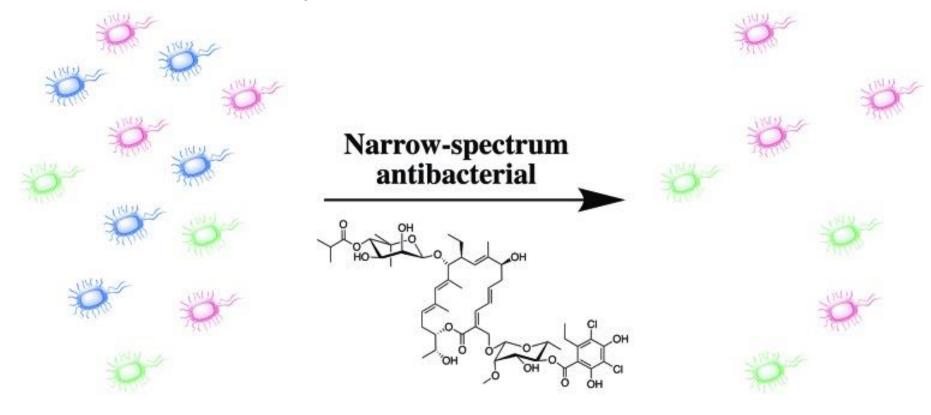
- Temporarily avoid top 7 histamine-containing foods (study¹):
 - 1. Sauerkraut
 - 2. Eggplant
 - 3. Spinach
 - 4. Fermented soy
 - 5. Cured cheese
 - 6. Dry fermented sausages
 - Fish derivates
- Temporarily avoid DAO scavengers:
 - Alcohol, aspirin, NAC
 - Specific prescription drugs
- Temporarily suppletion of DAO

The microbiome is an ecology: balance is key



- From an ecology perspective, it is about balance points.
- This can be illustrated with a ball in a stability landscape¹.
 - Disturbances of the microbiome can be considered forces that push the ball from its balance point.
- A healthy ecosystem has 'resilience': resistance against change.
- In a disturbed microbiome, the goal is to modulate it back into a desired stable state.
 - This is done by treating disturbing factors such as pathogens, inflammation, permeability, etc.

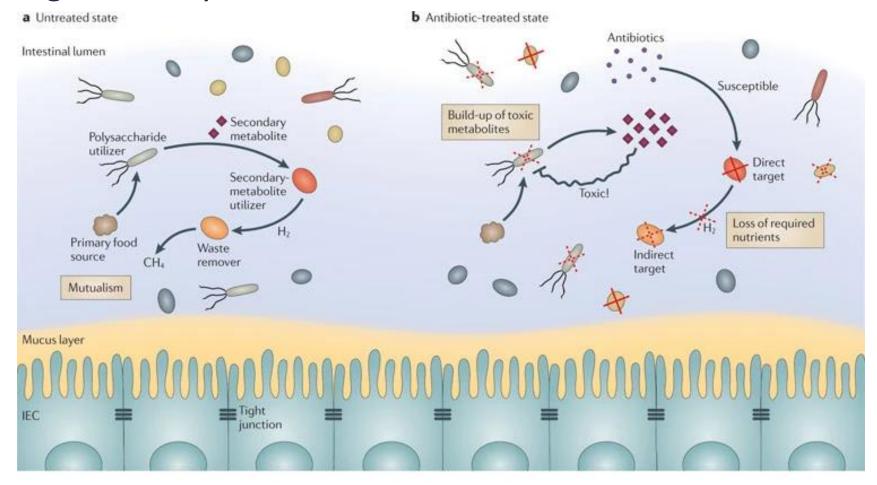
The microbiome is an ecology: balance is key


L. reuteri: anti-inflammatory **because** histamine-production

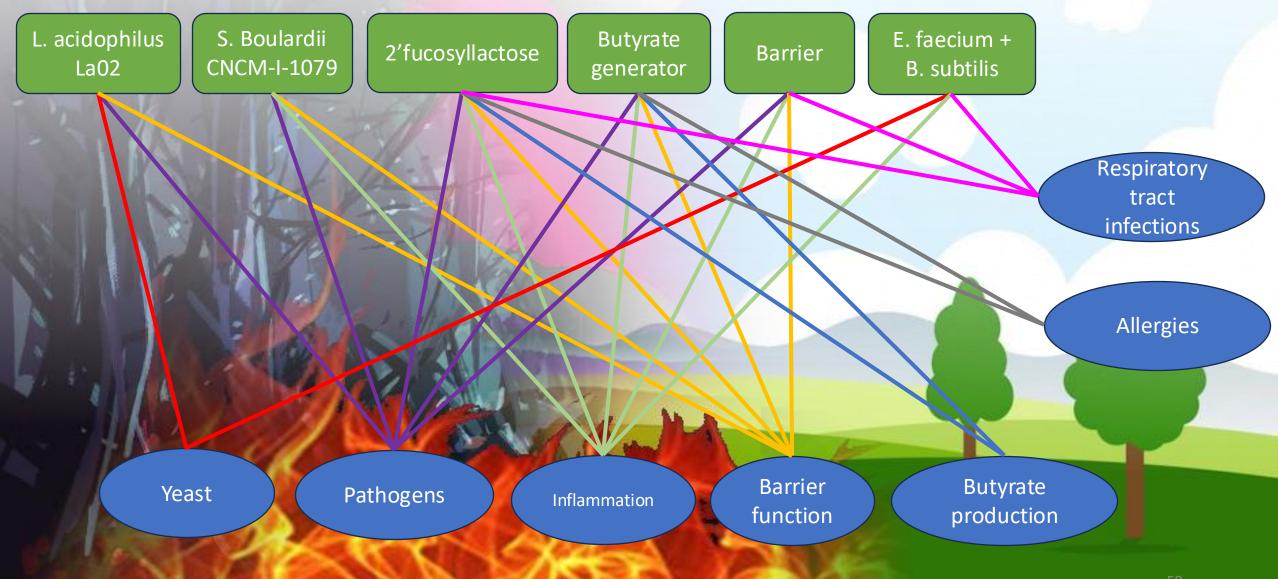
Total effect: balance between H1R and H2R

In an ecosystem, reductionistic cause-effect does not apply

Classic view on narrow-spectrum antibiotics:

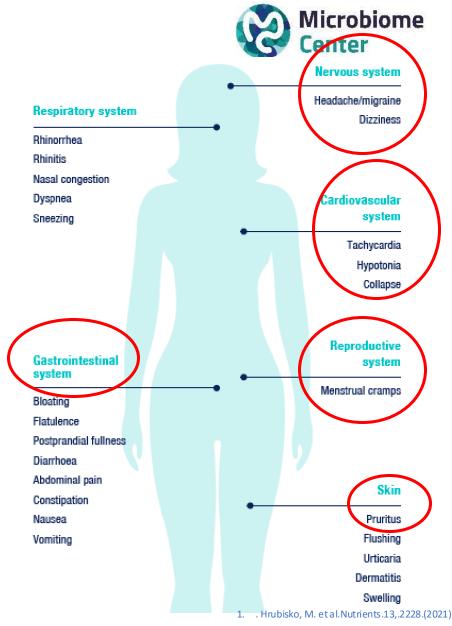

1. Melander, R. J. et al.MedChemComm.9,.12.(2017)

In an ecosystem, reductionistic cause-effect does not apply


58

The ecological reality:

In an ecosystem, everything happens at the same time



Case 2 Histamine

Patient: 46-year-old female

Symptoms:

- Mood Swings (since approx. age 16)
 - Diagnosed with depression / bipolar disorder.
- Gastrointestinal Issues & Food Allergies (since approx. age 8)
 - Symptoms: bloating, gas, fluctuating stools, abdominal pain.
 - Reactions to gluten, egg yolk, and tomatoes.
- Mastocytosis with Anaphylactic Attacks (since approx. age 8)
 - Triggers: food, stress, physical exertion (high intensity), hormonal changes (menstruation).
 - Uses Epi-pen approximately once a month and has had multiple ER visits due to mastocytosis anaphylaxis.
- Chronic stress, tension, fatigue, low energy
- Dizziness, weakness, light-headedness, tachycardia
- Mastocytosis skin spots

Case 2 Histamin

Microbiome results April'24:

- Dysbiosis
- Low Akkermansia Levels
- High Fat Content
- Elevated Zonulin

Prof. Dr. med. Burkhard Schütz Dr. med. univ. Vilmos Fux¹ Dr. med. Herbert Schmidt¹ Prof. Dr. med. Michael Kramer¹ Prof. Dr. med. Jörg Kriegsmann

Tel.: 0 64 31 / 21 248-0 E-Mail: info@bievis.de Fax: 0 64 31 / 21 248-66 Web: www.bievis.de

laam /oornaam			vrouwelijk	Opdrachtnr. Ingangsdatum	1356348 9 27.03.2024
atum monsterafr lateriaal	19.03.2024 20:48 FE, T909	Gevalideerd door Gevalideerd op	Dr. Herbert Schmidt 08.04.2024	Uitslagstatus Uitslagstatus op	Eindberich 08.04.202
Test		Uitslag Eenheid	Normbereik		Vorig onderzoek
Fecesdiagnostiel	<				
Mikrobiomanalys	e Midi PLUS (Microbioom Center)			
Moleculair-genet	ische microbioomanalyse 3.0				
Kenmerken van	de feces				
Kleur		bruin			NA) VIS
Consistentie	t	aaibrijig			NA) VIE
pH-waarde		7,0	5,8 - 6,5		NA) TEST
Diversiteit					/
Diversiteit		6,56	> 5,5		NA) MGSE
variëren. Fre	t aan bacteriën in de darm kan va quent gebruik van antibiotica, infe ijdige voeding of roken zijn hierop	ecties, toenemende	Grad	6	
Enterotype					
Bacteroides					NA) MGSE
Het menselij darmbacterië verschillende wordt geken	ke microbioom kan in drie enterot in vormen, afhankelijk van het en i dusters met typische metabolie merkt door hoge aantallen Bacter ilonisatie. Enterotype 3 wordt gek	che eigenschappen. Enterc oides en enterotype 2 doo	r een sterke	erotyp 1	NA) MOSE
Het menselij darmbacterië verschillende wordt geken Prevotella ko	e clusters met typische metabolisc merkt door hoge aantallen Bacter	che eigenschappen. Enterc oides en enterotype 2 doo	r een sterke	erotyp 1	NA; MOSE
Het menselij darmbacterië verschillende wordt geken Prevotella ko Dysbiose-index De dysbiose Bij deze maa	e clusters met typische metabolisc merkt door hoge aantallen Bacter	che eigenschappen. Entero oides en enterotype 2 do enmerkt door een Ruminic en en en gen binnen het microbiooi et alle onderzochte bacter	n weergeeft.		
verschillende wordt geken Prevotella ko Dysbiose-index De dysbiose Bij deze maa	clusters met typische metabolist merkt door hoge aantallen Bacter ilonisatie. Enterotype 3 wordt gek index is een maatstaf die afwijkir itstaf wordt rekening gehouden m	che eigenschappen. Entero oides en enterotype 2 do enmerkt door een Ruminic en en en gen binnen het microbiooi et alle onderzochte bacter	n weergeeft.		NA, MOSO NA, MOSO NA, RECH
Het menselij darmbacterit verschillende wordt geken Prevotella kr Dysbiose-index De dysbiose Bij deze maz geslachten e	clusters met typische metabolist merkt door hoge aantallen Bacter ilonisatie. Enterotype 3 wordt gek index is een maatstaf die afwijkir itstaf wordt rekening gehouden m	che eigenschappen. Entero oides en enterotype 2 do enmerkt door een Ruminic en en en gen binnen het microbiooi et alle onderzochte bacter	n weergeeft. lefyla, -		NA RECH

The contents of this document are property of Mi be published, reproduced, copied, made public, o FE=fecos, T909=fecos considered medical advice and is provided for Microbiome Center Bunuelstrook 101 NL-2726 SB Zoetermeer

*Externe analyse (R), A) geaccrediteerd NA) niet geaccrediteerd

laam	Ge:	slacht	vrouwelijk	Opdrachtnr. Ingangsdatum	13563 27.03.2
Test	Uitslag	Eenheid	Normbereik		Vorig onderzo
Indeling van bacteriën naar fylum					
Actinobacteria	0,6	%	1,5 - 7		NA)
Bacteroidetes	32,4	%	20 - 45		NA)
Firmicutes	62,0	%	50 - 75		NA)
Fusobacteria	0,0	%	0,0 - 1,0		NA)
Proteobacteria	4,2	%	1,0 - 3,5		NA:
Verrucomicrobia	0,0	%	1,5 - 5,0		NA)
Overige	0,7	%			NA:
Metaboloom (stofwisselingsactieve bact	eriegroepen)				NA)
Secundaire galzuren	-17,5	%			
TMA / TMAO	876,6	%			
Indoxylsulfaat	-50,0	%			_
Fenolen	120,5	%			
Ammoniak	120,5	%		_	_
Histamine	-50,0	%			
Equol	137,0	%			
Beta-glucuronidasen	-31,6	%			
Indeling van bacteriën naar fylum met d	e belangrijkste bact	eriegeslachten er	-soorten		
Actinobacteria					
Bifidobacterium	1,2 x 10^9	KVE/g feces	> 1,0 x 10^10		NA.
Bacteroidetes					
Bacteroides	1,1 x 10^11		> 5,0 x10^10		NA
Prevotella	1,2 x 10^10	KVE/g feces	> 1,0 x 10^10		NA)
Firmicutes					
Butyraatproducerende bacteriën					
Totaal kiemgetal	2,1 x 10^11		> 2,4 x 10^11		NA:
Faecalibacterium prausnitzii	6,6 x 10^10	KVE/g feces	>1,0 x10^11		NA.
Eubacterium rectale	3,2 x 10^9	KVE/g feces	> 2,0 x 10^10		NA)
Eubacterium hallii	2,6 x 10^10	KVE/g feces	> 1,5 x 10^10		NA.
Roseburia spp.	7,9 x 10^9	KVE/g feces	> 3,0 x10^10		NA:
Ruminococcus spp.	3,8 x 10^10	KVE/g feces	> 5,0 x 10^10		NA)
Coprococcus spp.	3,0 x 10^10	KVE/g feces	> 5,0 x 10^10		
Butyrivibrio spp.	3,5 x 10^10	-	>1,5 x 10^10		NA)
Clostridia	-,	- ***			NA:
Totaal kiemgetal	8,3 x 10^9	KVE/g feces	< 4,0 x 10^9		
Clostridia Cluster I	3,3 x 10^7		< 2,0 x 10^9		NA)
Fusobacteria	0,0 x 10 7	g	. 2,0 % 10 0		NA)
Fusobacterium	1,9 x 10^7	KVE/a feces	< 1.0 x 10^7		
Verrucomicrobia	1,0 X 10"7		,		NA)
Akkermansia muciniphila	1,0 x 10^5	KVF/a feces	> 5,0 x 10^9		
Proteobacteria	1,0 x 10%	TT LIG TO COS	~ 0,0 X 10.9		NA.
Proteobacteria Pathogene of potentieel pathogene bac	teriën				
Haemophilus spp.	5,8 x 10^8	KVF/g feces	< 5,0 x 10^8		

Naam	XXXXXX	$\times\!\!\times\!\!\times\!\!\times$	$\times\!\!\times\!\!\times\!\!\times$	Opdrachtnr.	13563489
	Ge	slacht	vrouwelijk	Ingangsdatum	27.03.2024
Test	Uitslag	Eenheid	Normbereik		Vorig onderzoek
Proteus spp.	< 1,0 x 10^5	KVE/g feces	< 1,0 x 10^6		FE NAJ MGSEQ
Klebsiella spp.	1,1 x 10^8	KVE/g feces	< 1,0 x 10^7		FE NA; MGSEQ
Enterobacter spp.	2,2 x 10^7	KVE/g feces	< 1,0 x 10^6		FE NAI MGSEQ
Serratia spp.	2,8 x 10^6	KVE/g feces	< 1,0 x 10^7		FE NAI MOSEO
Hafnia spp.	< 1,0 x 10^5	KVE/g feces	< 1,0 x 10^6		FE NAI MGSEQ
Morganella spp.	< 1,0 x 10^5	KVE/g feces	< 1,0 x 10^6		FE NA; MOSEQ
Citrobacter spp.	1,4 x 10^7	KVE/g feces	< 5,0 x 10^8		FE NA/ MGSEQ
Pseudomonas spp.	8,3 x 10^6	KVE/g feces	< 5,0 x 10^7		FE NAI MOSEQ
Providencia spp.	< 1,0 x 10^5	KVE/g feces	< 5,0 x 10^7		FE NA; MOSEQ
H2S-vorming					NA; MGSEQ
Sulfaatreducerende bacteriën (SRB)	1,8 x 10^10	KVE/g feces	< 2,5 x 10^9		FE NA, MOSEO
Desulfovibrio piger	< 1,0 x 10^5	KVE/g feces	< 1,0 x 10^9		FE
Desulfomonas pigra	< 1,0 x 10^5	KVE/g feces	< 1,0 x 10^9		NA) MGSEQ. FE
Bilophila wadsworthii		KVE/g feces	< 2,0 x 10^9		NA) MGSEQ FE
Immunogeniciteit / mucine vorming	.,		· · · · · · · · · · · · · · · · · · ·		NA; MGSEQ
Immunogeen werkende bacteriën					
Escherichia coli	3,5 x 10^7	KVE/g feces	10^6 - 10^7		FE NAI MGSEQ
Enterococcus spp.	2,78 x 10^5	KVE/g feces	10^6 - 10^7		NA, MOSEQ FE NA: MOSEQ
Lactobacillus spp.	< 1.0 x 10^5	KVE/g feces	10^5 - 10^7		NA) MGSEQ FE
Mucine vorming / slijmvliesbarrière					NA/ MGSEQ
Akkermansia muciniphila	1,0 x 10^5	KVE/g feces	> 5,0 x 10^9		FE
Faecalibacterium prausnitzii	6,6 x 10^10	KVE/g feces	>1,0 x10^11		NA) MGSEQ FE
Archaea	.,		· · · · · · · · · · · · · · · · · · ·	-	NA) MGSEQ
Methanogenen					
Methanobrevibacter spp.	1,5 x 10^9	KVE/g feces	< 5,0 x 10^8		FE NA; MGSEQ
			Opmerking: Het nieuwe matrix maken een nog	OmicSnap buisje en de da	arin aanwezige e mogelijk,
			matrix maken een nog vooral bij grampositieve	effectievere monetomalyse bacteriën.	mogelijk,
			We vragen u hier reker	e bacteriën. erschuivingen in de normbe ing mee te houden.	reiken.
Mycobioom: relevante gisten					
Candida albicans (CA)	<1,0 x 10^3	KVE/g feces	<1,0 x 10^3		FE NA) QPCR
Candida krusei (CK)	<1,0 x 10^3	KVE/g feces	< 1,0 x 10^3		FE NA) QPCR
Candida glabrata (CG)	<1,0 x 10^3	KVE/g feces	< 1,0 x 10^3		FE NA) QPCR
Candida dubliniensis (CD)	<1,0 x 10^3	KVE/g feces	< 1,0 x 10^3		FE NA) QPCR
Candida parapsilosis (CP)	<1,0 x 10^3	KVE/g feces	< 1,0 x 10^3		FE NA) QPCR
Candida tropicalis (CTp)	<1,0 x 10^3	KVE/g feces	< 1,0 x 10^3		FE NA) OPCR
Candida lusitaniae (CL)	<1,0 x 10^3	KVE/g feces	< 1,0 x 10^3		FE NA) OPCR
Parasieten					rey MFVN
Pathobionten					
Blastocystis hominis	positief		negatief		FE A) MOLEK
Dientamoeba fragilis	grenswaarde		negatief		FE A) MOLEK
Pathogene darmprotozoa					,
Giardia lamblia	negatief		negatief		FE A) MOLEK
Entamoeba histolytica	negatief		negatief		FE A) MOLEK
Cryptosporidium spp.	negatief		negatief		FE A) MOUTK
					-y =0.0ER

62

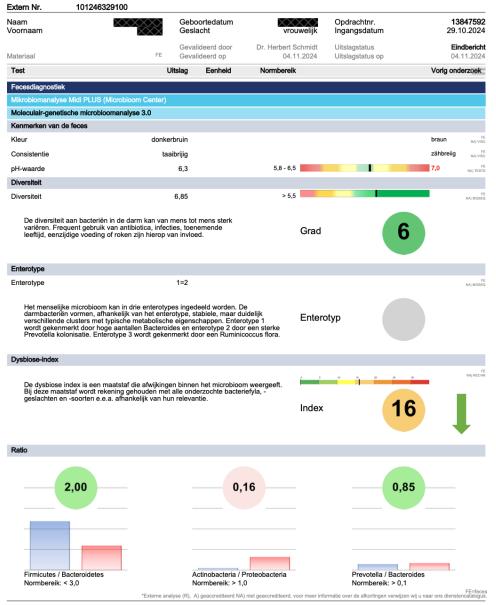
*Externe analyse (R), A) geaccrediteerd NA) niet geaccrediteerd

2024
oek.
FE N) MOLEK
FE (A) PHOT
FE (A) PHOT
FE
(A) PHOT FE
(A) PHOT
FE
A) ELISA FE
A) ELISA FE
A) ELISA
FE A) ELISA
T909 A) ELISA
FE A) ELISA

Case 2 Histamine

Treatment:

MyOwnBlend


Results:

- Reduced abdominal pain
- Better, firmer stool
- Fewer mastocytosis attacks (no use of epi-pen since starting MOB - 6 months)
- Reduced allergic reactions to foods such as gluten
- Increased energy
- Better sleep
- Less muscle & joint pain
- Fewer mastocytosis skin spots
- Less dizziness and weakness
- Weight gain (as if nutrients are being better absorbed)

MC ID	Element	Dagdosering
M002	MyOwnBlend, ma gistrale bereiding 2 maanden (oraal)	
BB058	S. Boulardii	2
BB044	L. sakei probio65	2
BB028	L. plantarum P-8	2
BB027	L. rhamnosus SP1	1
BB021	Bacillus coagulans Unique IS-2	2
BB023	2'-Fucosyllactose	4
BB011	Butyraat generator	2

Case 2 Histamine

 Second microbiome analysis November'24:

aam		\sim	slacht	vrouweli	Vrouwelijk Ingangsdatum	
Test	Uit	tslag	Eenheid	Normbereik	ijk ingangsdatum	29.10.202 Vorig onderzoe
Indeling van bacteriën naar fyl	um					
Actinobacteria		0,5	%	1,5 - 7		NA) MG
Bacteroidetes	:	29,7	%	20 - 45		NA) MG
Firmicutes	:	59,3	%	50 - 75		NA) MG
Fusobacteria		0,0	%	0,0 - 1,0		NA) MO
Proteobacteria		3,2	%	1,0 - 3,5		NAI MO
Verrucomicrobia		2,3	%	1,5 - 5,0		NAI MO
Overige		5,1	%			
Metaboloom (stofwisselingsac	tieve bacteriegroepen)					NA) MO
Secundaire galzuren		28,7	%			
TMA / TMAO	5	64,1	%			
Indoxylsulfaat		50,0	%			
Fenolen		67,8	%			
Ammoniak		16,5	%			
Histamine		50,0	%			
			%			
Equol		-5,0	%			
Beta-glucuronidasen		46,3				
Indeling van bacteriën naar fyl Actinobacteria	um met de belangnjikste	9 Dact	enegesiachten ei	n -soorten		
Bifidobacterium	9.7 v 1	1048	KVE/g feces	> 1,0 x 10^10		
Bacteroidetes	0,7 X	10 0	111 Lig 10000	1,0 % 10 10		NA; M
Bacteroides	85 v 10	0^10	KVE/g feces	> 5,0 x10^10		
Prevotella			KVE/g feces	> 1,0 x 10^10		NA; M
Prevotella	copri	6	%	- 1,0 x 10 10		NA; M
Firmicutes	сорп	0	70			NA; M
Butyraatproducerende bacteri	ěn					
Fotaal kiemgetal		0411	KVE/g feces	> 2,4 x 10^11		
Faecalibacterium prausnitzii			KVE/g feces	>1,0 x10^11		NA) M
•				> 2,0 x 10^10		NA; M
Eubacterium rectale			KVE/g feces			NA; M
Eubacterium hallii			KVE/g feces	> 1,5 x 10^10		NA; MI
Roseburia spp.			KVE/g feces	> 3,0 x10^10		NA; M
Ruminococcus spp.			KVE/g feces	> 5,0 x 10^10		NA) M
Coprococcus spp.	3,3 x 10	0^10	KVE/g feces	> 5,0 x 10^10		NA; M
Butyrivibrio spp.	1,2 x 10	0^11	KVE/g feces	>1,5 x 10^10		NA) M
Clostridia						
Totaal kiemgetal	9,0 x ′	10^9	KVE/g feces	< 4,0 x 10^9		NA) MI
Clostridia Cluster I	1,0 x 1	10^5	KVE/g feces	< 2,0 x 10^9		NA; MI
Fusobacteria						
Fusobacterium	< 1,0 x 1	10^5	KVE/g feces	< 1,0 x 10^7		NA) MI
Verrucomicrobia						
Akkermansia muciniphila	6,8 x 1	10^9	KVE/g feces	> 5,0 x 10^9		NA; M
Proteobacteria						
Pathogene of potentieel patho	gene hacteriën					
Haemophilus spp.	•		KVE/g feces	< 5,0 x 10^8		

Microbiome Center Bunuelstrook 101 NL-2726 SB Zoetermeer

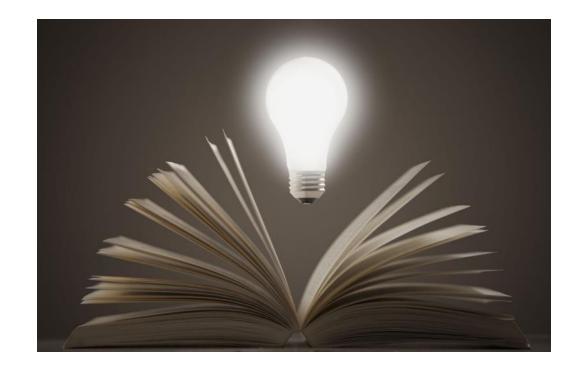
Naam	$\langle XXXXXX \rangle$	XXXXX	$\times\!\!\times\!\!\times\!\!\times$	Opdrachtnr.	13847592
××××××××××××××××××××××××××××××××××××××	Ce Ge	slacht	vrouwelijk	Ingangsdatum	29.10.202
Test	Uitslag	Eenheid	Normbereik		Vorig onderzoek
Acinetobacter spp.	< 1,0 x 10^5	KVE/g feces	< 1,0 x 10^6		NA) MGSI
Proteus spp.	< 1,0 x 10^5	KVE/g feces	< 1,0 x 10^6		NA) MGSI
Klebsiella spp.	1,0 x 10^7	KVE/g feces	< 1,0 x 10^7		NA) MGS
Enterobacter spp.	< 1,0 x 10^5	KVE/g feces	< 1,0 x 10^6		NA) MGSI
Serratia spp.	1,0 x 10^7	KVE/g feces	< 1,0 x 10^7		NA) MGSI
Hafnia spp.	< 1,0 x 10^5	KVE/g feces	< 1,0 x 10^6		NA) MGSI
Morganella spp.	< 1,0 x 10^5	KVE/g feces	< 1,0 x 10^6		NA; MGS
Citrobacter spp.		KVE/g feces	< 5,0 x 10^8		,
Pseudomonas spp.	< 1,0 x 10^5	KVE/g feces	< 5,0 x 10^7		NA) MGSI
Providencia spp.	< 1,0 x 10^5		< 5,0 x 10^7		NA) MGS
H2S-vorming	1,0 % 10 0				NA) MGS
Sulfaatreducerende bacteriën (SRB)	9.4 x 10^9	KVE/g feces	< 2,5 x 10^9		
Desulfovibrio piger	< 1,0 x 10^5		< 1,0 x 10^9		NA) MGS
Desulfomonas pigra	< 1,0 x 10^5		< 1,0 x 10^9		NA) MGSI
Bilophila wadsworthii	< 1,0 x 10 5		< 2,0 x 10^9		NA) MGSI
Immunogeniciteit / mucine vorming	< 1,0 x 10 3	TTP I COCO	- 1,0 X 10 0		NA) MGSI
Immunogeen werkende bacteriën					
Escherichia coli	6.7 x 10^6	KVE/g feces	10^6 - 10^7		
Enterococcus spp.	1,03 x 10^6	-	10^6 - 10^7		NA) MGSI
Lactobacillus spp.	< 1,0 x 10^5		10^5 - 10^7		NA) MGS
Mucine vorming / slijmvliesbarrière	4 1,0 X 10 0				NA) MGS
Akkermansia muciniphila	6.8 x 10^9	KVE/g feces	> 5,0 x 10^9		
Faecalibacterium prausnitzii	6,9 x 10^10		>1.0 x10^11		NA) MGSI
Archaea	0,0 x 10 10		1,0 210 11		NA) MGSI
Methanogenen					
Methanobrevibacter spp.	1,2 x 10^9	KVE/g feces	< 5,0 x 10^8		
	.,=	•	Opmerking: Het nieu	we OmicSnan-huisie en de daa	NA) MGSI
			matrix maken een no vooral bij grampositi	we OmicSnap-buisje en de daa og effectievere monsteranalyse r eve bacteriën.	mogelijk,
			Dit resulteert in lichte	e verschuivingen in de normbere ening mee te houden.	iken.
Mycobioom: relevante gisten					
Candida albicans (CA)	<1,0 x 10^3	KVE/g feces	<1,0 x 10^3		NA) Pi
Candida krusei (CK)	<1,0 x 10^3	KVE/g feces	< 1,0 x 10^3		NA) P
Candida glabrata (CG)	<1,0 x 10^3	KVE/g feces	< 1,0 x 10^3		NA) P
Candida dubliniensis (CD)	<1,0 x 10^3	KVE/g feces	< 1,0 x 10^3		NA) P
Candida parapsilosis (CP)	<1,0 x 10^3	KVE/g feces	< 1,0 x 10^3		NA) P
Candida tropicalis (CTp)	<1,0 x 10^3	KVE/g feces	< 1,0 x 10^3		NA) P
Candida lusitaniae (CL)	<1,0 x 10^3		< 1,0 x 10^3		NA) P
Parasieten					NA) Pi
Pathobionten					
Blastocystis hominis	positief		negatief		positiv
Dientamoeba fragilis	positief		negatief		grenzwertig A) MOU
Pathogene darmprotozoa					A) MOL
Giardia lamblia	negatief		negatief		negativ
					A) MO

Entamoeba histolytica

negatief

Seite 2 von 5

*Externe analyse (R), A) geaccrediteerd NA) niet geaccrediteerd, voor meer informatie over de afkortingen verwijzen wij u naar ons dienstencatalogus.



^^^^	XXXX Gesla	o o b t	ymayyyaliik	Opdrachtnr.	20	10.2024
	Gesia	acni	vrouwelijk	Ingangsdatum		
Test	Uitslag	Eenheid	Normbereik		Vorig one	derzoek
Cryptosporidium spp.	negatief		negatief		negativ	FE A) MOLEK
Cyclospora cayetanensis	negatief		negatief		negativ	FE A) MOLEK
Vertering						
Vetgehalte	8,80	g/100g	< 3,5		8,99	FE NA) PHOT
Stikstofgehalte	0,89	g/100g	< 1,0		0.00	FE NA) PHOT
Suikergehalte	2,62	g/100g	< 2,5		2,50	FE NA) PHOT
Watergehalte	71,57	g/100g	75 - 85		70,62	NA) PHOT
Extra parameter(s)						
Calprotectine	<17,90	mg/l	< 50		<17,90	FE A) ELISA
Alfa-1-antitripsine	<1,8	mg/dl	< 27,5		<1,8	FE A) ELISA
Secretoir Immunoglobuline A	540,2	μg/ml	510 - 2040		484,0	FE A) ELISA
Zonuline	45,28	ng/ml	< 55		73,47	FE A) ELISA

Take-home messages

- Histamine has important physiological roles! You cannot live without it.
- Histamine sensitivity has multiple potential causes
- In many cases low levels of the histamine-degrading enzyme DAO is the <u>consequence</u> rather than cause of inflammation rather
- Whether or not probiotic bacteria can produce histamine is of minor importance.
- In microbiome treatments it is all about balance.
- It is impossible for a doctor to know whether histamine sensitivity is cause of consequence, is endogenous or external.
- In case there are gut problems: start treating the microbiome.
 - Optimize diet for gut health, take into acount histamine content for severe cases.

Webinar calendar

Intervisions/Arbeitskreisen

February 12th: Arbeitskreis 2: discuss cases

February 13th: Starter meeting (NL)

February 18th: Arbeitskreis 1: starters (DE)

March 19th: Arbeitskreis 2: discuss cases (DE)

April 1st: Arbeitskreis 2: discuss cases (DE)

April 3rd: Intervision: discuss cases (NL)

April 8th: Starter meeting (NL)

April 10th: Arbeitskreis 1: starters (DE)

May 19th: Starter meeting (NL)

May 21st: Arbeitskreis 2: discuss cases (DE)

• June 3rd: Arbeitskreis 1: starters (DE)

June 5th: Intervision: discuss cases (NL)

• June 26th: Arbeitskreis 2: discuss cases (DE)

Thematic webinars:

March 17th: Autism (EN)

· April 1st: Autism (DE)

April 14th: Microbiome as ecosystem (NL)

April 17th: Microbiome as ecosystem (DE)

May 13th: Allergies (DE)

